Electronic Supplementary Information

An efficient oxa-Michael addition to diethyl vinylphosphonate under mild reaction conditions

Ondřej Baszczyňski, Petr Jansa, Martin Dračínský, Martin Maxmilian Kaiser, Petr Špaček, Zlatko Janeba*

Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic; e-mail: janeba@uochb.cas.cz

1. Experimental Section

1.1. Methods.

Unless otherwise stated, solvents were evaporated at 40 °C/2 kPa, and compounds were dried at 2 kPa over P₂O₅. TLC was performed on TLC aluminium sheets – silica gel 60 F₂₅₄ (Merck), chromatographic systems are described in the main text. Column chromatography was performed on silica gel 230-400 mesh, 60 Å (Merck). ¹H and ¹³C NMR spectra were measured on a Bruker Avance 600 spectrometer (¹H at 600 MHz and ¹³C at 151 MHz) and/or Avance 500 spectrometer (500 Mhz and 126 MHz) in CDCl₃ or CD₃OD and referred to TMS or residual solvent signal. The numbering system for assignment of NMR signals is undermentioned. GC/MS spectra were obtained from Agilent 5975B MSD coupled to 6890N gas chromatograph. Mass range was to 1050 u. and GC was equipped with split/splitless injector and HP-5 capillary column. Mass spectra were measured on Q-Tof micro (Waters) using ESI technique. Optical rotations were measured on an AUTOPOL IV polarimetr (Rudolph research analytical) at 20 °C; [α]_D values are given [10⁻¹ deg cm² g⁻¹] and concentrations *c* are [g/100 ml].

1.2. Materials and solvents.

Starting compounds were purchased from Sigma-Aldrich (Prague, Czech Republic). Diethyl vinylphosphonate (7) was purchased from Epsilon-Chemie (Guipavas, France). *Tert*-Butanol was stored over molecular sieves (4 Å). Racemic 1-fluoro-3-(trityloxy)propan-2-ol (1) was prepared according to literature.¹

1.3. General procedures for the oxa-Michael addition to diethyl vinylphosphonate (DEVP).

Method A (for mono-alkylations): The corresponding alcohol (1 mmol) and cesium carbonate (325 mg, 1 mmol) were placed into a reaction vial (10 mL). Dry *tert*-butanol (1 mL) was added and the vial was sealed with a septum. The mixture was vigorously stirred for 15 min. DEVP (234 μ L, 1.5 mmol) was added and the mixture was stirred for another 24 hours. The reaction was quenched with saturated aqueous NH₄Cl solution. Water phase was extracted with EtOAc (3 x 20 mL) or, in case of the nucleoside analogs with CHCl₃ (3 x 20 mL. Organic phase was collected and dried over Na₂SO₄. The solution was filtered and evaporated in *vacuo* (40 °C, 2 mbar). Crude compound was purified by flash chromatography (hexane/EtOAc or CHCl₃/MeOH).

Method B (for bis-alkylations): Alcohol (1 mmol) and cesium carbonate (650 mg, 2 mmol) was placed into a reaction vial (10 mL). Dry *tert*-butanol (1 mL) was added and the vial was sealed with a septum. The mixture was vigorously stirred for 15 min. DEVP (390 μL, 2.5 mmol) was added and the mixture was stirred for another 24 hours. Reaction was quenched by saturated aqueous NH₄Cl. Water phase was 3 x extracted with EtOAc (20 mL in case of nucleoside analogs CHCl₃ was used). Organic phase was collected and dried over Na₂SO₄. The solution was filtered and evaporated in *vacuo* (40 °C, 2 mbar). Crude compounds were purified by flash chromatography (Hexane/EtOAc or CHCl₃/MeOH).

Diethyl 2-(1,3-bis(benzyloxy)propan-2-yloxy)ethylphosphonate (19).

Method A: From compound **9** (545 mg, 2 mmol) was obtained compound **19** (751 mg, 86 %). ESI [M+Na $^+$] 459.2 (100). HRMS (ESI) calcd for $C_{23}H_{33}O_6NaP$

[M+Na⁺]: 459.1907, found: 459.1905. ¹H NMR (CDCl₃): 7.34-7.24 (m, 10H, 2', 3', 4'); 4.56-

4.48 (m, 4H, CH₂-1'); 4.10-4.00 (m, 4H, CH₂-O-P); 3.86 (m, 2H, **CH**₂-CH₂-P); 3.69 (m, 1H, 2); 3.61-3.50 (m, 4H, 1, 3); 2.13 (dm, $J_{\text{C-H-P}} = 18.6$, CH₂-P); 1.28 (t, 6H, $J_{\text{CH3-CH2}} = 7.1$, CH₃); ¹³C NMR (CDCl₃): 138.05 (1'); 128.21 (3'); 127.48 (2'); 127.46 (4'); 78.10 (2); 73.27 (**CH**₂-1'); 69.97 (1, 3); 64.20 (**CH**₂-CH₂-P); 61.45 (d, $J_{\text{C-O-P}} = 6.3$, CH₂-O-P); 27.27 (d, $J_{\text{C-P}} = 138.5$, CH₂-P); 16.26 (d, $J_{\text{C-C-O-P}} = 6.1$, CH₃); For C₂₃H₃₃O₆P (436.48) calcd: C, 63.29; H, 7.62; P, 7.10. Found: C, 63.09; H, 7.77; P, 6.94.

Diethyl 2-(1-(benzyloxy)-3-(trityloxy)propan-2-yloxy)ethylphosphonate (20).

Method A: From compound **10** (212 mg, 0.5 mmol) was obtained compound **20** (162 mg, 55 %). ESI [M+Na⁺]: 611.0 (100). HRMS (ESI) calcd for C₃₅H₄₁O₆NaP [M+Na⁺]: 611.2533, found: 611.2530. This compound was fully characterised after the deprotection of the trityl group (80 % acetic acid, reflux, 2 h) as **diethyl 2-(1-(benzyloxy)-1-hydroxypropan-2-yloxy)ethylphosphonate:** 97 mg (53 % from compound **10**). ESI [M+Na⁺]: 369 (100).

HRMS (ESI) calcd for $C_{16}H_{28}O_6P$ [M+H⁺]: 347.1618, found: 347.1617. ¹H NMR (CDCl₃): 7.27-7.35 (m, 5H, 2', 3', 4'); 4.53 (s, 2H, CH₂-1'); 4.16-4.05 (m, 4H, **CH**₂-

CH₃); 3.98 (m, 1H, CH₂-CH₂-P); 3.81 (m, 1H, CH₂-CH₂-P); 3.72 (dd, 1H, $J_{gem} = 11.7$, $J_{3a-2} = 2.8$, 3a); 3.62 (m, 1H, 2); 3.59-3.49 (m, 3H, 3b, 1); 2.16-2.02 (m, 2H, CH₂-P); 1.32 (t, 3H, $J_{CH3-CH2} = 7.1$, CH₃); 1.31 (t, 3H, $J_{CH3-CH2} = 7.1$, CH₃). ¹³C NMR (CDCl₃): 137.98 (1'); 128.34 (3'); 127.62 (4'); 127.54 (2'); 80.02 (2); 73.40 (CH₂-1'); 70.19 (1); 63.93 (d, $J_{C-C-P} = 5.9$, CH₂-CH₂-P); 62.17 (3); 61.87 (d, $J_{C-O-P} = 6.4$, CH₂-CH₃); 61.57 (d, $J_{C-O-P} = 6.5$, CH₂-CH₃); 27.08 (d, $J_{C-P} = 141.5$, CH₂-P); 16.32 (d, $J_{C-C-O-P} = 6.2$, CH₃). For C₁₆H₂₉O₇P (monohydrate) (364.37) calcd: C, 52.74; H, 8.02; P, 8.50. Found: C, 52.95; H, 7.98; P, 8.40.

Diethyl 2-(1-phenylpropan-2-yloxy)ethylphosphonate (21).

Method A: From compound **11** (272 mg, 2 mmol) was obtained compound **21** (529 mg, 88 %). ESI [M+Na⁺] 323.1 (100). HRMS (ESI) calcd for $C_{15}H_{25}O_4NaP$ [M+Na⁺]: 323.1383, found: 323.1382. ¹H NMR (CDCl₃): 7.33-7.17 (m, 5H, 2', 3', 4'); 4.13-4.02 (m, 4H, **CH**₂-CH₃); 3.73 (m, 1H, CH_{2a}-O-2); 3.66-3.57 (m, 2H, CH_{2b}-O-2, 2); 2.90 (dd, 1H, J_{gem} = 13.6, J_{1a-2} = 6.3, 1a); 2.62 (dd, 1H, J_{gem} = 13.6, J_{1b-2} = 6.7, 1b); 2.09-1.99 (m, 2H, CH₂-P); 1.31 (m, 6H, CH₂-**CH**₃); 1.13 (d, 3H, J_{3-2} = 6.2, 3); ¹³C NMR (CDCl₃): 138.56 (1'); 129.20 (2'); 127.98 (3'), 125.89 (4'); 76.74 (2); 62.26 (**CH**₂-O-2); 61.33 (m, **CH**₂-CH₃); 42.75 (1);

27.01 (d, $J_{C-P} = 138.7$, CH₂-P); 19.24 (3); 16.19 (d, $J_{C-C-O-P} = 6.2$, CH₂-CH₃); For C₁₅H₂₅O₄P (300.33) calcd: C, 59.99; H, 8.39; P, 10.31. Found: C, 59.72; H, 8.28; P, 10.44.

Diethyl $\{[(1,2:5,6-Di-O-isopropylidene-\alpha-D-glucofuranos-3-yl)oxy]ethyl\}$ phosphonate (22)

Method A: From compound **12** (520 mg, 2 mmol) was obtained compound **22** (429 mg, 51 %). ESI [M+Na⁺] 447 (100). HRMS (ESI) calcd for $C_{18}H_{33}O_{9}NaP$ [M+Na⁺]: 447.1754, found: 447.1753. ¹H NMR (CDCl₃): 5.85 (d, 1H, $J_{1-2} = 3.7$, 1); 4.59 (d, 1H, $J_{2-1} = 3.7$, 2); 4.28 (dt, 1H, $J_{5-6b} = 5.8$, J_{5-6a} and $J_{5-4} = 8.2$, 5); 4.14-4.04 (m, 6H,

CH₂-CH₃, 4, 6a); 3.99 (dd, 1H, $J_{gem} = 8.6$, $J_{6b-5} = 5.5$, 6b), 3.91-3.76 (m, 3H, **CH**₂-CH₂-P, 3); 2.14-2.07 (m, 2H, P-CH₂); 1.49 and 1.42 and 1.35 and 1.31 (4 x s, 4 x 3H, CH₃-*i*Pr); 1.33 (m, 6H, CH₂-**CH**₃); ¹³C NMR (CDCl₃): 111.80 (1); 109.00 (5); 105.22 (1); 82.39 (2); 82.26 (3); 80.95 (4); 72.31 (5); 67.26 (6); 64.52 (**CH**₂-CH₂-P); 61.63 (m, **CH**₂-CH₃); 27.05 (d, $J_{C-P} = 139.7$, CH₂-P); 26.82 and 26.77 and 26.18 and 25.37 (4x CH₃); 16.40 (d, $J_{C-C-O-P} = 6.2$, CH₂-**CH**₃); For C₁₈H₃₃O₉P (424.42) calcd: C, 50.94; H, 7.84; P, 7.30. Found: C, 50.87; H, 7.69; P, 7.43.

Diethyl 2-(2-phenyl-1,3-dioxan-5-yloxy)ethylphosphonate (23).

Metod A: From compound **13** (1.80 g, 10 mmol) was obtained compound **23** (1.70 g, 49 %). ESI [M+Na⁺] 367 (100). HRMS (ESI) calcd for $C_{16}H_{25}O_6NaP = 367.1281$, found: 367.1281. ¹H NMR (CDCl₃): 7.51 (m, 2H, 2'); 7.32-7.38 (m, 3H, 3',4'); 5.56 (s, 1H, 2); 4.33-4.37 (m, 2H, **4,6a**); 4.05-4.18 (m, 6H, **CH**₂-CH₃, 4,6b); 3.82-3.87 (m, 2H, **CH**₂-CH₂-P); 3.34 (p, 1H, $J_{5-4} = J_{5-6} = J_{5-6} = J_{5-6}$

1.7, 5); 2.22 (dm, 2H, $J_{H-C-P} = 18.5$, CH_2-P); 1.32 (t, 6H, J = 7.0, CH_3). ¹³C NMR (CDCl₃): 138.02 (1'); 128.83 (4'); 128.13 (3'); 126.05 (2'); 101.19 (2); 71.11 (5); 68.85 (4,6); 62.92 (CH₂-CH₂-P); 61.66 (d, $J_{C-O-P} = 6.3$, P-O-CH₂); 27.24 (d, $J_{C-P} = 138.9$, CH_2-P); 16.38 (d, $J_{C-C-O-P} = 6.1$, CH3).

Diethyl 2-(4-hydroxy-4-methylpentan-2-yloxy)ethylphosphonate (24).

Method B: From compound **14** (236 mg, 2 mmol) was obtained compound **24** (252 mg, 45 %). ESI [M+Na⁺] 305.1 (100). HRMS (ESI) calcd for $C_{12}H_{27}O_5NaP$ [M+Na⁺]: 305.1488, found: 305.1487. ¹H NMR (CDCl₃): 4.08 (m, 4H, **CH**₂-CH₃); 3.88-3.77 (m, 2H, 2, **CH**_{2a}-CH₂-P); 3.53 (m, 1H, **CH**_{2b}-CH₂-P); 2.11-.1.97 (m, 2H, CH₂-P); 1.73 (dd, 1H, $J_{gem} = 14.7$, $J_{3a-2} = 10.7$, 3a); 1.47 (dd, $J_{gem} = 14.7$, $J_{3b-2} = 2.6$, 3b); 1.33 (2 x t, 6H, $J_{CH_3-CH_2} = 7.1$, CH₂-**CH₃**); 1.25 and 1.19 (2 x s, 2 x 3H, 5); 1.18 (d, 3H, $J_{1-2} = 6.0$, 1); ¹³C NMR (CDCl₃): 74.08 (2), 69.87 (4); 61.89 (d, $J_{C-C-P} = 1.7$, **CH**₂-CH₂-P); 61.69 (m, **CH**₂-CH₃), 48.96 (3); 31.00 and 28.13 (5); 27.27 (d, $J_{C-P} = 140.5$, CH₂-P); 19.70 (1); 16.36 (m, CH₂-**CH₃**); For $C_{12}H_{27}O_5P$ (282.31) calcd: C, 51.05; H, 9.64; P, 10.97. Found: C, 50.84; H, 9.62; P, 11.05.

3-Benzyloxy-1,2-bis[(diethoxyphosphoryl)ethoxy]propane (25).

Method B: From compound **15** (364 mg, 2 mmol) was obtained compound **25** (569 mg, 56 %). ESI [M+Na⁺] 533.2 (100). HRMS (ESI) calcd for $C_{22}H_{40}O_{9}NaP_{2}$ [M+Na⁺]: 533.2040, found: 533.2038. ¹H NMR (CDCl₃): 7.36-7.26 (m, 5H, 2', 3', 4'); 4.53 (s, 2H, CH₂-1'); 4.13-4.04 (m, 8H, **CH**₂-CH₃); 3.84 (m, 2H, **CH**₂-O-2); 3.63 (m, 2); 3.58-3.48 (m, 4H, 1, 3); 2.96 (m, 2H, **CH**₂-O-1), 2.16-2.05 (4H, CH₂-P); 1.33-1.29 (m, 12H, CH₂-**CH**₃); ¹³C NMR (CDCl₃): 138.04 (C-1'); 128.29 (C-3'); 127.56 (C-4'); 127.53 (C-2'); 77.98 (C-2); 73.33 (**CH**₂-1'); 70.62 (C-1); 69.78 (C-3); 65.28 (**CH**₂-O-1); 64.27 (**CH**₂-O-2); 61.51 (m, **CH**₂-CH₃); 27.30 (d, $J_{C-P} = 138.6$, **CH**₂-CH₂-O-2); 26.88 (d, $J_{C-P} = 139.4$, **CH**₂-CH₂-O-1); 16.34 (m, CH₂-**CH**₃); For $C_{22}H_{40}O_{9}P_{2}$ (510.50) calcd: C, 51.76; H, 7.90; P, 12.13; Found: C, 50.60; H, 7.78; P, 12.35.

9-{3-[(Diethoxyphosphoryl)ethoxy]-2-hydroxypropyl}adenine (26).

Method A: From compound **16** (105 mg, 0.5 mmol) was obtained compound **26** (22 mg, 12 %). ESI [M+Na⁺] 396 (100). HRMS (ESI) calcd for $C_{14}H_{25}O_5N_5P$ [M+H⁺]: 374.1588, found: 374.1587. ¹H NMR (CD₃OD): 8.20 (s,

1H, 2); 8.12 (s, 1H, 8); 4.40 (dd, 1H, $J_{gem} = 14.2$, $J_{1'a-2'} = 3.9$, 1'a); 4.23 (dd, 1H, $J_{gem} = 14.2$, $J_{1'b-2'} = 7.8$, 1'b); 4.15-4.07 (m, 5H, CH_2 -CH₃, 2'); 3.75-3.68 (m, 2H, 4'); 3.46-3.52 (m, 2H, 3'); 2.16 (dt, 2H, $J_{5'-4'} = 7.0$, $J_{5'-P} = 18.2$, 5'); 1.33 (t, 6H, $J_{CH3-CH2} = 7.0$, CH_2 -CH₃). ¹³C NMR (CDCl₃): 157.22 (6); 153.59 (2); 150.91 (4); 143.69 (8); 119.84 (5); 73.58 (3'); 69.53 (2'); 66.21 (d, $J_{4'-P} = 2.9$, 4'); 63.35 (d, $J_{CH2-P} = 6.5$, CH_2 -CH₃); 47.89 (1'); 27.10 (d, $J_{5'-P} = 140.3$, 5'); 16.71 (d, $J_{CH3-P} = 6.1$, CH_2 -CH₃). For $C_{14}H_{24}N_5O_5P$ (373.34) calcd: C, 45.04; H, 6.48; N, 18.76; P, 8.30. Found: C, 45.07; H, 6.64; N, 18.48; P, 8.13.

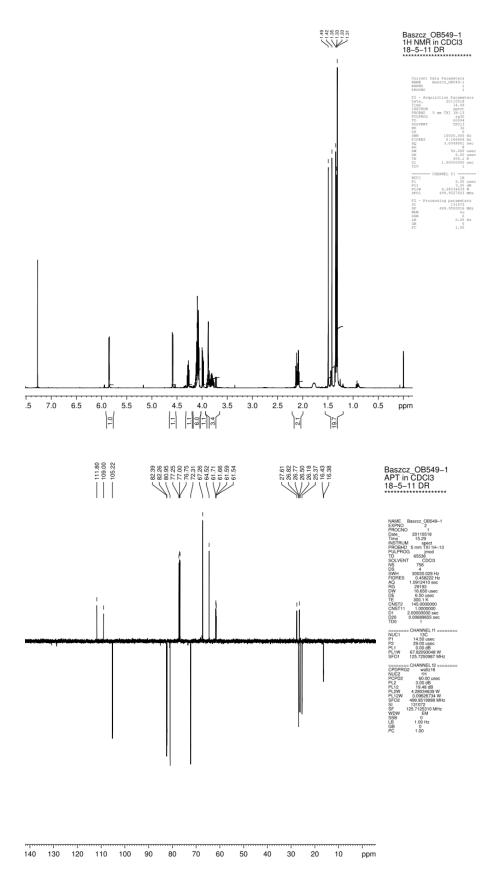
9-{3-[(Diethoxyphosphoryl)ethoxy]-2-hydroxy-2-methylpropyl}adenine (27).

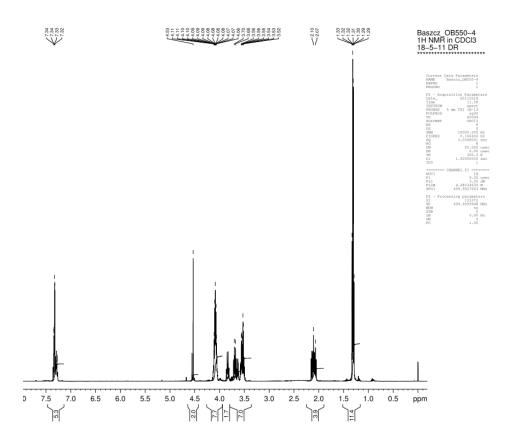
Method A: From compound **17** (112 mg, 0.5mmol) was obtained compound **27** (25 mg, 13 %). ESI [M+H⁺] 388 (100). HRMS (ESI) calcd for $C_{15}H_{27}O_5N_5$ [M+H⁺]: 388.1744, found 388.1745. ¹H NMR (CDCl₃): 8.32 (s, 1H, 2); 8.10 (s, 1H, 8); 6.62 (bs, 2H, NH₂); 4.34 (d, 1H, J_{gem} =

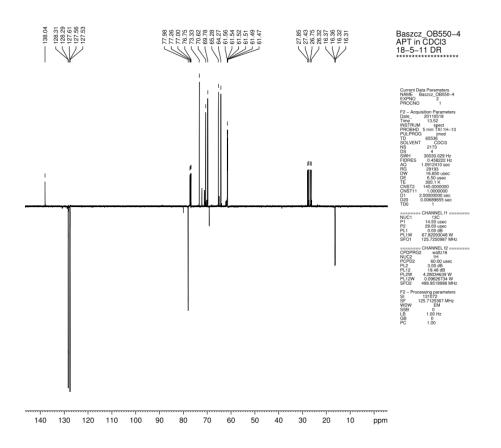
14.3, 1'a); 4.26 (d, 1H, $J_{gem} = 14.3$, 1'b); 4.18-4.06 (m, 4H, **CH**₂-CH₃); 3.67-3.78 (m, 2H, **CH**₂-CH₂-P); 3.38-3.32 (m, 2H, 3'); 2.09-2.03 (m, 2H, 5'); 1.35-1.31 (m, 6H, CH₂-**CH**₃); 1.15 (s, 3H, CH₃-2'). ¹³C NMR (CDCl₃): 154.54 (6); 150.85 (2); 150.32 (4); 142.90 (8); 118.77 (5); 75.94 (3'); 71.94 (2'); 65.53 (d, $J_{C-C-P} = 4.6$, **CH**₂-CH₂-P); 61.87-61.81 (m, **CH**₂-CH₃); 50.95 (1'); 26.60 (d, $J_{C-P} = 141.5$, CH₂-P); 22.40 (**CH**₃-2'); 16.41 (d, $J_{C-C-O-P} = 6.1$, CH₂-**CH**₃). For C₁₅H₂₆N₅O₅P (387.37) calcd: C, 46.51; H, 6.77; N, 18.08; P, 8.00. Found: C, 46.71; H, 6.96; N, 17.81; P, 7.82.

$9-\{3-[(Diethoxyphosphoryl)ethoxy]-2-[(diisopropoxyphosphoryl)methoxy]propyl\}-adenine~(28).$

Method A: From compound **18** (100 mg, 0.26 mmol) was obtained compound **28** (20 mg, 14 %). ESI [M+H⁺] 552 (100). ¹H NMR (CDCl₃): 8.32 (s, 1H, 2); 8.14 (s, 1H, 8); 6.83 (bs, 2H, NH₂); 4.73-4.64 (m, 2H, CH-*i*Pr); 4.51 (dd, 1H, $J_{\text{gem}} = 14.5$, $J_{1'a-2'} = 3.8$, 1'a); 4.32 (dd, 1H, $J_{\text{gem}} = 14.5$,


 $J_{1'b-2'} = 6.8$, 1'b); 4.15-4.07 (m, 4H, **CH₂-CH₃**); 3.98 (m, 1H, 2'); 3.88 (dd, 1H, $J_{gem} = 13.8$, $J_{H-C-P} = 8.5$, **CH_{2a}-O-2'**); 3.74 (dd, 1H, $J_{gem} = 13.8$, $J_{H-C-P} = 9.0$, **CH_{2b}-O-2'**); 3.74-3.67 (m, 2H, CH₂-O-3'); 3.55-3.50 (m, 2H, 3'); 2.10 (dt, 2H, $J_{H-C-P} = 18.7$, $J_{CH2-CH2} = 7.3$, CH₂-**CH₂**-


P); 1.34-1.24 (m, 18H, CH₃); ¹³C NMR (CDCl₃): 153.97 (6); 149.92 (2); 149.85 (4); 142.87 (8); 118.82 (5); 78.56 (d, $J_{2^{\circ}-P} = 10.3$); 71.20 (m, CH-*i*Pr); 69.47 (3°); 65.60 (**CH**₂-O-3°); 64.99 (d, $J_{C-P} = 168.7$, **CH**₂-O-2°); 61.72 (d, $J_{C-O-P} = 6.5$, **CH**₂-O-P); 44.42 (1°); 26.86 (d, $J_{C-P} = 140.3$, CH₂-**CH**₂-P); 24.02-23.90 (m, CH₃-*i*Pr); 16.42 (d, $J_{C-C-O-P} = 6.0$, CH₂-**CH**₃); For C₂₁H₃₉O₈P₂ (551.51) calcd: C, 45.73; H, 7.13; P, 11.23. Found: C, 45.53; H, 7.28; P, 11.19.


References:

¹⁾ Baszczynski, O.; Jansa, P.; Dracinsky, M.; Klepetarova, B.; Holy, A.; Votruba, I.; De Clercq, E.; Balzarini, J.; Janeba, Z.: *Bioorg. Med. Chem.* Vol. 19(7), 2114-2124.

1.4. Example of the NMR spectra of the selected products

