Electronic Supplementary Information

An efficient oxa-Michael addition to diethyl vinylphosphonate under mild reaction conditions

Ondřej Baszczyňski, Petr Jansa, Martin Dračínský, Martin Maxmilian Kaiser, Petr Špaček, Zlatko Janeba*

Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic; e-mail: janeba@uochb.cas.cz

1. Experimental Section

1.1. Methods.

Unless otherwise stated, solvents were evaporated at $40{ }^{\circ} \mathrm{C} / 2 \mathrm{kPa}$, and compounds were dried at 2 kPa over $\mathrm{P}_{2} \mathrm{O}_{5}$. TLC was performed on TLC aluminium sheets - silica gel $60 \mathrm{~F}_{254}$ (Merck), chromatographic systems are described in the main text. Column chromatography was performed on silica gel 230-400 mesh, $60 \AA$ (Merck). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Bruker Avance 600 spectrometer (${ }^{1} \mathrm{H}$ at 600 MHz and ${ }^{13} \mathrm{C}$ at 151 MHz) and/or Avance 500 spectrometer (500 Mhz and 126 MHz) in CDCl_{3} or $\mathrm{CD}_{3} \mathrm{OD}$ and referred to TMS or residual solvent signal. The numbering system for assignment of NMR signals is undermentioned. GC/MS spectra were obtained from Agilent 5975B MSD coupled to 6890N gas chromatograph. Mass range was to 1050 u . and GC was equipped with split/splitless injector and HP-5 capillary column. Mass spectra were measured on Q-Tof micro (Waters) using ESI technique. Optical rotations were measured on an AUTOPOL IV polarimetr (Rudolph research analytical) at $20^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}$ values are given $\left[10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}\right]$ and concentrations c are [g/100 ml].

1．2．Materials and solvents．

Starting compounds were purchased from Sigma－Aldrich（Prague，Czech Republic）． Diethyl vinylphosphonate（7）was purchased from Epsilon－Chemie（Guipavas， France）．Tert－Butanol was stored over molecular sieves（ $4 \AA$ ）．Racemic 1－fluoro－3－ （trityloxy）propan－2－ol（1）was prepared according to literature．${ }^{1}$

1．3．General procedures for the oxa－Michael addition to diethyl vinylphosphonate （DEVP）．

Method A（for mono－alkylations）：The corresponding alcohol（ 1 mmol ）and cesium carbonate（ $325 \mathrm{mg}, 1 \mathrm{mmol}$ ）were placed into a reaction vial（ 10 mL ）．Dry tert－butanol（ 1 mL ）was added and the vial was sealed with a septum．The mixture was vigorously stirred for 15 min ．DEVP（ $234 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$ ）was added and the mixture was stirred for another 24 hours．The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution．Water phase was extracted with $\mathrm{EtOAc}\left(3 \times 20 \mathrm{~mL}\right.$ ）or，in case of the nucleoside analogs with $\mathrm{CHCl}_{3}(3 \times 20$ mL ．Organic phase was collected and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ．The solution was filtered and evaporated in vacuo（ $40{ }^{\circ} \mathrm{C}, 2 \mathrm{mbar}$ ）．Crude compound was purified by flash chromatography （hexane／EtOAc or $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ ）．

Method B（for bis－alkylations）：Alcohol（ 1 mmol ）and cesium carbonate（ $650 \mathrm{mg}, 2 \mathrm{mmol}$ ） was placed into a reaction vial（ 10 mL ）．Dry tert－butanol（ 1 mL ）was added and the vial was sealed with a septum．The mixture was vigorously stirred for 15 min ．DEVP（ $390 \mu \mathrm{~L}, 2.5$ mmol ）was added and the mixture was stirred for another 24 hours．Reaction was quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ ．Water phase was 3 x extracted with EtOAc（ 20 mL in case of nucleoside analogs CHCl_{3} was used）．Organic phase was collected and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ． The solution was filtered and evaporated in vacuo（ $40^{\circ} \mathrm{C}, 2 \mathrm{mbar}$ ）．Crude compounds were purified by flash chromatography（Hexane／EtOAc or $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ ）．

Diethyl 2－（1，3－bis（benzyloxy）propan－2－yloxy）ethylphosphonate（19）．

Method A：From compound 9 （ $545 \mathrm{mg}, 2 \mathrm{mmol}$ ）was obtained compound 19 （ $751 \mathrm{mg}, 86 \%$ ）．ESI $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$ 459.2 （100）．HRMS（ESI）calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{NaP}$ $\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 459.1907$ ，found：459．1905．${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 7.34-7.24\left(\mathrm{~m}, 10 \mathrm{H}, 2^{〔}, 3^{〔}, 4^{〔}\right) ; 4.56-$
4.48 (m, 4H, CH ${ }_{2}-1^{\prime}$); 4.10-4.00 (m, 4H, CH2-O-P); 3.86 (m, 2H, CH2 $\mathbf{C H}_{2}-\mathrm{P}$); $3.69(\mathrm{~m}, 1 \mathrm{H}$, 2); 3.61-3.50 (m, 4H, 1, 3); $2.13\left(\mathrm{dm}, J_{\mathrm{C}-\mathrm{H}-\mathrm{P}}=18.6, \mathrm{CH}_{2}-\mathrm{P}\right) ; 1.28\left(\mathrm{t}, 6 \mathrm{H}, J_{\mathrm{CH} 3-\mathrm{CH} 2}=7.1, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}): 138.05 (1`); 128.21 (3‘); 127.48 (2`); 127.46 (4`); 78.10 (2); \(73.27\left(\mathbf{C H}_{\mathbf{2}^{-}}\right.\) \(\left.1^{`}\right) ; 69.97(1,3) ; 64.20\left(\mathbf{C H}_{2}-\mathrm{CH}_{2}-\mathrm{P}\right) ; 61.45\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{O}-\mathrm{P}}=6.3, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}\right) ; 27.27\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=138.5\right.\), $\left.\mathrm{CH}_{2}-\mathrm{P}\right) ; 16.26\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{P}}=6.1, \mathrm{CH}_{3}\right)$; For $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{P}$ (436.48) calcd: C, 63.29; H, 7.62; P, 7.10. Found: C, 63.09; H, 7.77; P, 6.94.

Diethyl 2-(1-(benzyloxy)-3-(trityloxy)propan-2-yloxy)ethylphosphonate (20).

Method A: From compound $\mathbf{1 0}(212 \mathrm{mg}, 0.5 \mathrm{mmol})$ was obtained compound $20(162 \mathrm{mg}, 55$ \%). ESI $\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 611.0$ (100). HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{41} \mathrm{O}_{6} \mathrm{NaP}^{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 611.2533$, found: 611.2530. This compound was fully characterised after the deprotection of the trityl group (80% acetic acid, reflux, 2 h) as diethyl 2-(1-(benzyloxy)-1-hydroxypropan-2yloxy)ethylphosphonate: 97 mg (53% from compound 10). ESI [M+Na $\left.{ }^{+}\right]: 369$ (100).

HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{P}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 347.1618$, found: 347.1617. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: 7.27-7.35 (m, 5 H , $2^{‘}, 3^{‘}, 4^{‘}$); 4.53 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}-1^{\text {' }}$); 4.16-4.05 (m, 4H, $\mathbf{C H}_{2}{ }^{-}$ $\left.\mathrm{CH}_{3}\right) ; 3.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathbf{C H}_{2}-\mathrm{CH}_{2}-\mathrm{P}\right) ; 3.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathbf{C H}_{2}-\mathrm{CH}_{2}-\mathrm{P}\right) ; 3.72\left(\mathrm{dd}, 1 \mathrm{H}, J_{\text {gem }}=11.7, J_{3 \mathrm{a}-2}=\right.$ 2.8, 3a); $3.62(\mathrm{~m}, 1 \mathrm{H}, 2) ; 3.59-3.49(\mathrm{~m}, 3 \mathrm{H}, 3 \mathrm{~b}, 1) ; 2.16-2.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{P}\right) ; 1.32(\mathrm{t}, 3 \mathrm{H}$, $\left.J_{\mathrm{CH} 3-\mathrm{CH} 2}=7.1, \mathrm{CH}_{3}\right) ; 1.31\left(\mathrm{t}, 3 \mathrm{H}, J_{\mathrm{CH} 3-\mathrm{CH} 2}=7.1, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 137.98\left(1^{`}\right) ; 128.34$ (3'); $127.62\left(4^{`}\right) ; 127.54\left(2^{`}\right) ; 80.02(2) ; 73.40\left(\mathrm{CH}_{2}-1^{`}\right) ; 70.19$ (1); $63.93\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{C}-\mathrm{P}}=5.9\right.$, $\mathbf{C H}_{2}-\mathrm{CH}_{2}-\mathrm{P}$); 62.17 (3); 61.87 (d, $J_{\mathrm{C}-\mathrm{O}-\mathrm{P}}=6.4, \mathbf{C H}_{2}-\mathrm{CH}_{3}$); 61.57 (d, $J_{\mathrm{C}-\mathrm{O}-\mathrm{P}}=6.5, \mathbf{C H}_{2}-\mathrm{CH}_{3}$); $27.08\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=141.5, \mathrm{CH}_{2}-\mathrm{P}\right) ; 16.32\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{P}}=6.2, \mathrm{CH}_{3}\right.$). For $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{O}_{7} \mathrm{P}$ (monohydrate) (364.37) calcd: C, 52.74; H, 8.02; P, 8.50. Found: C, 52.95; H, 7.98; P, 8.40.

Diethyl 2-(1-phenylpropan-2-yloxy)ethylphosphonate (21).

Method A: From compound 11 ($272 \mathrm{mg}, 2 \mathrm{mmol}$) was obtained compound 21 ($529 \mathrm{mg}, 88 \%$). ESI $\left[\mathrm{M}+\mathrm{Na}^{+}\right] 323.1$ (100). HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{NaP}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 323.1383, found: 323.1382. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$): 7.33-7.17 (m, 5H, 2', 3', 4'); 4.13-4.02 (m, $\left.4 \mathrm{H}, \mathbf{C H}_{2}-\mathrm{CH}_{3}\right) ; 3.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2 \mathrm{a}}-\mathrm{O}-2\right) ; 3.66-3.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 \mathrm{~b}}-\mathrm{O}-2,2\right) ; 2.90\left(\mathrm{dd}, 1 \mathrm{H}, J_{\text {gem }}=\right.$ $\left.13.6, J_{1 \mathrm{a}-2}=6.3,1 \mathrm{a}\right) ; 2.62\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{gem}}=13.6, J_{\mathrm{lb}-2}=6.7,1 \mathrm{~b}\right) ; 2.09-1.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{P}\right)$; $1.31\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{\mathbf{3}}\right) ; 1.13\left(\mathrm{~d}, 3 \mathrm{H}, J_{3-2}=6.2,3\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 138.56$ (1'); 129.20 (2`); 127.98 (3`), 125.89 (4`); 76.74 (2); 62.26 ($\mathbf{C H}_{2}-\mathrm{O}-2$); 61.33 (m, $\mathbf{C H}_{2}-\mathrm{CH}_{3}$); 42.75 (1);
27.01 ($\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=138.7, \mathrm{CH}_{2}-\mathrm{P}$); 19.24 (3); 16.19 (d, $J_{\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{P}}=6.2, \mathrm{CH}_{2}-\mathrm{CH}_{3}$); For $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{P}$ (300.33) calcd: C, 59.99; H, 8.39; P, 10.31. Found: C, 59.72; H, 8.28; P, 10.44.

Diethyl $\{[(1,2: 5,6-\mathrm{Di}-O$-isopropylidene- α-D-glucofuranos-3-yl)oxy]ethyl $\}$ phosphonate

 (22)Method A: From compound 12 ($520 \mathrm{mg}, 2 \mathrm{mmol}$) was obtained compound 22 ($429 \mathrm{mg}, 51 \%$). ESI $\left[\mathrm{M}+\mathrm{Na}^{+}\right] 447$ (100). HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{O}_{9} \mathrm{NaP}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 447.1754$, found: 447.1753. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 5.85\left(\mathrm{~d}, 1 \mathrm{H}, J_{1-2}=3.7,1\right) ; 4.59\left(\mathrm{~d}, 1 \mathrm{H}, J_{2-1}=3.7\right.$, 2); $4.28\left(\mathrm{dt}, 1 \mathrm{H}, J_{5-6 \mathrm{~b}}=5.8, J_{5-6 \mathrm{a}}\right.$ and $\left.J_{5-4}=8.2,5\right) ; 4.14-4.04(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathbf{C H}_{\mathbf{2}}-\mathrm{CH}_{3}, 4,6 \mathrm{a}\right) ; 3.99\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{g} \text { em }}=8.6, J_{6 \mathrm{~b}-5}=5.5,6 \mathrm{~b}\right), 3.91-3.76\left(\mathrm{~m}, 3 \mathrm{H}, \mathbf{C H}_{\mathbf{2}}-\mathrm{CH}_{2}-\mathrm{P}, 3\right)$; 2.14-2.07 (m, 2H, P-CH $)_{2}$; 1.49 and 1.42 and 1.35 and $1.31\left(4 \times \mathrm{s} \mathrm{s}, 4 \times 3 H, \mathrm{CH}_{3}-i \mathrm{Pr}\right) ; 1.33(\mathrm{~m}$, $\left.6 \mathrm{H}, \mathrm{CH}_{2}-\mathbf{C H}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): 111.80 (1); 109.00 (5); 105.22 (1); 82.39 (2); 82.26 (3); 80.95 (4); 72.31 (5); 67.26 (6); $64.52\left(\mathbf{C H}_{2}-\mathrm{CH}_{2}-\mathrm{P}\right) ; 61.63\left(\mathrm{~m}, \mathbf{C H}_{2}-\mathrm{CH}_{3}\right) ; 27.05\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ 139.7, $\left.\mathrm{CH}_{2}-\mathrm{P}\right) ; 26.82$ and 26.77 and 26.18 and $25.37\left(4 \mathrm{xCH}_{3}\right) ; 16.40\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{P}}=6.2, \mathrm{CH}_{2-}\right.$ $\mathbf{C H}_{3}$); For $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{O}_{9} \mathrm{P}$ (424.42) calcd: C, 50.94; H, 7.84; P, 7.30. Found: C, 50.87; H, 7.69; P, 7.43 .

Diethyl 2-(2-phenyl-1,3-dioxan-5-yloxy)ethylphosphonate (23).

Metod A: From compound $\mathbf{1 3}(1.80 \mathrm{~g}, 10 \mathrm{mmol})$ was obtained compound 23 ($1.70 \mathrm{~g}, 49 \%$). ESI $\left[\mathrm{M}+\mathrm{Na}^{+}\right] 367$ (100). HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{6} \mathrm{NaP}=367.1281$, found: 367.1281. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): 7.51 (m, 2H, $2^{`}$); 7.32-7.38 (m, 3H, $3^{`}, 4^{〔}$); 5.56 (s, 1H, 2); 4.33-4.37 (m, 2H, 4,6a); 4.05-4.18 (m, 6H, CH2 $\mathbf{C H}_{3}$, 4,6b); 3.82-3.87 (m, 2H, $\mathbf{C H}_{2}-\mathrm{CH}_{2}-\mathrm{P}$); $3.34\left(\mathrm{p}, 1 \mathrm{H}, \mathrm{J}_{5-4}=\mathrm{J}_{5-6}=\right.$ 1.7, 5); $2.22\left(\mathrm{dm}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{C}-\mathrm{P}}=18.5, \mathbf{C H}_{2}-\mathrm{P}\right) ; 1.32\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.0, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: 138.02 (1'); 128.83 (4'); 128.13 (3'); 126.05 (2'); 101.19 (2); 71.11 (5); 68.85 (4,6); 62.92 $\left(\mathbf{C H}_{2}-\mathrm{CH}_{2}-\mathrm{P}\right) ; 61.66\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{O}-\mathrm{P}}=6.3, \mathrm{P}-\mathrm{O}-\mathbf{C H}_{2}\right) ; 27.24\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=138.9, \mathbf{C H}_{2}-\mathrm{P}\right) ; 16.38$ (d, J $\mathrm{J}_{\mathrm{C}-\mathrm{C}-}$ о-P $=6.1, \mathbf{C H 3}$).

Diethyl 2-(4-hydroxy-4-methylpentan-2-yloxy)ethylphosphonate (24).

> Method B: From compound $\mathbf{1 4}(236 \mathrm{mg}, 2 \mathrm{mmol})$ was obtained compound $24(252 \mathrm{mg}, 45 \%)$. $\mathrm{ESI}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 305.1(100)$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{NaP}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 305.1488$, found: 305.1487. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 4.08\left(\mathrm{~m}, 4 \mathrm{H}, \mathbf{C H}_{2}-\mathrm{CH}_{3}\right) ; 3.88-3.77\left(\mathrm{~m}, 2 \mathrm{H}, 2, \mathbf{C H}_{2 \mathrm{a}}-\mathrm{CH}_{2}-\mathrm{P}\right)$; 3.53 (m, 1H, $\left.\mathbf{C H}_{2 \mathrm{~b}}-\mathrm{CH}_{2}-\mathrm{P}\right) ; 2.11-1.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{P}\right) ; 1.73\left(\mathrm{dd}, 1 \mathrm{H}, J_{\text {gem }}=14.7, J_{3 \mathrm{a}-2}=10.7\right.$, $3 \mathrm{a}) ; 1.47\left(\mathrm{dd}, J_{\mathrm{gem}}=14.7, J_{3 \mathrm{~b}-2}=2.6,3 \mathrm{~b}\right) ; 1.33\left(2 \mathrm{xt}, 6 \mathrm{H}, J_{\mathrm{CH} 3-\mathrm{CH} 2}=7.1, \mathrm{CH}_{2}-\mathbf{C H}_{3}\right) ; 1.25$ and 1.19 ($2 \mathrm{x} \mathrm{s}, 2 \times 3 \mathrm{H}, 5$); 1.18 (d, $3 \mathrm{H}, J_{1-2}=6.0,1$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: 74.08 (2), 69.87 (4); 61.89 (d, $\left.J_{\text {C-C-P }}=1.7, \mathbf{C H}_{2}-\mathrm{CH}_{2}-\mathrm{P}\right) ; 61.69\left(\mathrm{~m}, \mathbf{C H}_{2}-\mathrm{CH}_{3}\right), 48.96$ (3); 31.00 and 28.13 (5); 27.27 (d, $\left.J_{\mathrm{C}-\mathrm{P}}=140.5, \mathrm{CH}_{2}-\mathrm{P}\right) ; 19.70(1) ; 16.36\left(\mathrm{~m}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$; For $\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{P}$ (282.31) calcd: C, 51.05; H, 9.64; P, 10.97. Found: C, 50.84; H, 9.62; P, 11.05.

3-Benzyloxy-1,2-bis[(diethoxyphosphoryl)ethoxy]propane (25).

Method B: From compound $\mathbf{1 5}$ ($364 \mathrm{mg}, 2 \mathrm{mmol}$) was obtained compound 25 ($569 \mathrm{mg}, 56 \%$). ESI $\left[\mathrm{M}+\mathrm{Na}^{+}\right] 533.2$ (100). HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{9} \mathrm{NaP}_{2} \quad\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 533.2040, found: 533.2038. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 7.36-7.26\left(\mathrm{~m}, 5 \mathrm{H}, 2^{‘}, 3^{\prime}, 4^{〔}\right) ; 4.53(\mathrm{~s}$, 2H, CH ${ }_{2}-1$ '); 4.13-4.04 (m, 8H, $\mathbf{C H}_{2}-\mathrm{CH}_{3}$); 3.84 (m, 2H, $\mathbf{C H}_{2}-\mathrm{O}-2$); 3.63 (m, 2); 3.58-3.48 (m, 4H, 1, 3); 2.96 (m, 2H, CH2-O-1), 2.16-2.05 (4H, CH2 $\mathbf{C H}_{2}$); 1.33-1.29 (m, 12H, $\mathrm{CH}_{2}-\mathbf{C H}_{3}$); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $138.04\left(\mathrm{C}-1^{`}\right) ; 128.29(\mathrm{C}-3 `) ; 127.56\left(\mathrm{C}-4{ }^{`}\right) ; 127.53\left(\mathrm{C}-2^{`}\right) ; 77.98(\mathrm{C}-2)$; 73.33 ($\mathbf{C H}_{2}-{ }^{\text {' }}$); 70.62 (C-1); 69.78 (C-3); 65.28 ($\mathbf{C H}_{2}-\mathrm{O}-1$); 64.27 ($\left.\mathbf{C H}_{2}-\mathrm{O}-2\right) ; 61.51$ (m, $\mathbf{C H}_{2}-\mathrm{CH}_{3}$); 27.30 (d, $J_{\mathrm{C}-\mathrm{P}}=138.6, \mathbf{C H}_{2}-\mathrm{CH}_{2}-\mathrm{O}-2$); 26.88 (d, $J_{\mathrm{C}-\mathrm{P}}=139.4, \mathbf{C H}_{2}-\mathrm{CH}_{2}-\mathrm{O}-1$); 16.34 (m, $\mathrm{CH}_{2}-\mathbf{C H}_{3}$); For $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{9} \mathrm{P}_{2}$ (510.50) calcd: C, 51.76; H, 7.90; P, 12.13; Found: C, 50.60; H, 7.78; P, 12.35.

9-\{3-[(Diethoxyphosphoryl)ethoxy]-2-hydroxypropyl\}adenine (26).

Method A: From compound $\mathbf{1 6}$ ($105 \mathrm{mg}, 0.5 \mathrm{mmol}$) was obtained compound 26 ($22 \mathrm{mg}, 12 \%$). ESI $\left[\mathrm{M}+\mathrm{Na}^{+}\right] 396$ (100). HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{~N}_{5} \mathrm{P}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 374.1588, found: $374.1587 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): 8.20$ (s ,
$1 \mathrm{H}, 2) ; 8.12(\mathrm{~s}, 1 \mathrm{H}, 8) ; 4.40\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{gem}}=14.2, J_{1^{\prime} \mathrm{a}-2^{\prime}}=3.9,1^{\prime} \mathrm{a}\right) ; 4.23\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{gem}}=14.2\right.$, $\left.J_{1^{\prime} \mathrm{b}-2^{`}}=7.8,1^{\prime} \mathrm{b}\right) ; 4.15-4.07\left(\mathrm{~m}, 5 \mathrm{H}, \mathbf{C H}_{2}-\mathrm{CH}_{3}, 2^{`}\right) ; 3.75-3.68\left(\mathrm{~m}, 2 \mathrm{H}, 4^{`}\right) ; 3.46-3.52(\mathrm{~m}, 2 \mathrm{H}$, $\left.3^{`}\right) ; 2.16\left(\mathrm{dt}, 2 \mathrm{H}, J_{5^{`}-4^{\prime}}=7.0, J_{5^{`}-\mathrm{P}}=18.2,5^{`}\right) ; 1.33\left(\mathrm{t}, 6 \mathrm{H}, J_{\mathrm{CH} 3-\mathrm{CH} 2}=7.0, \mathrm{CH}_{2}-\mathbf{C H}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 157.22$ (6); 153.59 (2); 150.91 (4); 143.69 (8); 119.84 (5); 73.58 (3`); 69.53 (2‘); \(66.21\left(\mathrm{~d}, J_{4^{4}-\mathrm{P}}=2.9,4^{〔}\right) ; 63.35\left(\mathrm{~d}, J_{\mathrm{CH} 2-\mathrm{P}}=6.5, \mathbf{C H}_{2}-\mathrm{CH}_{3}\right) ; 47.89\left(1^{\mathrm{f}}\right) ; 27.10\left(\mathrm{~d}, J_{5^{4}-\mathrm{P}}=140.3\right.\), \(5^{`}\)); $16.71\left(\mathrm{~d}, J_{\mathrm{CH} 3-\mathrm{P}}=6.1, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$. For $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{P}$ (373.34) calcd: C, 45.04; H, 6.48; N, 18.76; P, 8.30. Found: C, 45.07; H, 6.64; N, 18.48; P, 8.13.

9-\{3-[(Diethoxyphosphoryl)ethoxy]-2-hydroxy-2-methylpropyl\}adenine (27).

Method A: From compound $\mathbf{1 7}$ ($112 \mathrm{mg}, 0.5 \mathrm{mmol}$) was obtained compound 27 ($25 \mathrm{mg}, 13 \%$). ESI $\left[\mathrm{M}+\mathrm{H}^{+}\right] 388$ (100). HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{~N}_{5}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 388.1744, found 388.1745. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 8.32(\mathrm{~s}, 1 \mathrm{H}$, 2); 8.10 (s, 1H, 8); 6.62 (bs, 2H, NH2); 4.34 (d, 1H, $J_{\mathrm{gem}}=$ 14.3, 1'a); $4.26\left(\mathrm{~d}, 1 \mathrm{H}, J_{\text {gem }}=14.3,1^{\prime} \mathrm{b}\right) ; 4.18-4.06\left(\mathrm{~m}, 4 \mathrm{H}, \mathbf{C H}_{2}-\mathrm{CH}_{3}\right) ; 3.67-3.78(\mathrm{~m}, 2 \mathrm{H}$, $\mathbf{C H}_{2}-\mathrm{CH}_{2}-\mathrm{P}$); 3.38-3.32 (m, 2H, ${ }^{`}$); 2.09-2.03 (m, 2H, $5^{\text {' }}$); 1.35-1.31 (m, $6 \mathrm{H}, \mathrm{CH}_{2}-\mathbf{C H}_{3}$); 1.15 (s, $3 \mathrm{H}, \mathrm{CH}_{3}-2$ '). ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}): 154.54 (6); 150.85 (2); 150.32 (4); 142.90 (8); 118.77 (5); 75.94 (3'); 71.94 (2'); 65.53 (d, $J_{\text {C-C-P }}=4.6, \mathbf{C H}_{2}-\mathrm{CH}_{2}-\mathrm{P}$); 61.87-61.81 (m, $\mathbf{C H}_{2}-\mathrm{CH}_{3}$); 50.95 (1'); $26.60\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=141.5, \mathrm{CH}_{2}-\mathrm{P}\right) ; 22.40\left(\mathbf{C H}_{3}-{ }^{`}\right) ; 16.41\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{P}}=6.1, \mathrm{CH}_{2} \mathbf{C H}_{3}\right)$. For $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{P}$ (387.37) calcd: C, 46.51; H, 6.77; N, 18.08; P, 8.00. Found: C, 46.71; H, 6.96; N, 17.81; P, 7.82.

9-\{3-[(Diethoxyphosphoryl)ethoxy]-2-[(diisopropoxyphosphoryl)methoxy]propyl\}adenine (28).

Method A: From compound $\mathbf{1 8}(100 \mathrm{mg}, 0.26 \mathrm{mmol})$ was obtained compound 28 ($20 \mathrm{mg}, 14 \%$). ESI $\left[\mathrm{M}+\mathrm{H}^{+}\right] 552$ (100). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 8.32$ (s, $1 \mathrm{H}, 2$); $8.14(\mathrm{~s}, 1 \mathrm{H}, 8)$; 6.83 (bs, 2H, NH2); 4.73-4.64 (m, 2H, CH-iPr); 4.51 (dd, $1 \mathrm{H}, J_{\text {gem }}=14.5, J_{1^{\text {'a }-2}{ }^{\text {c }}}=3.8,1^{\text {'a }}$) ; $4.32\left(\mathrm{dd}, 1 \mathrm{H}, J_{\text {gem }}=14.5\right.$,
 $\left.J_{\mathrm{H}-\mathrm{C}-\mathrm{P}}=8.5, \mathbf{C H}_{2 \mathrm{a}}-\mathrm{O}-2^{`}\right) ; 3.74\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{gem}}=13.8, J_{\mathrm{H}-\mathrm{C}-\mathrm{P}}=9.0, \mathbf{C H}_{\mathbf{2 b}}-\mathrm{O}-2\right.$ ' $) ; 3.74-3.67(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}-3^{`}\right) ; 3.55-3.50\left(\mathrm{~m}, 2 \mathrm{H}, 3^{`}\right) ; 2.10\left(\mathrm{dt}, 2 \mathrm{H}, J_{\mathrm{H}-\mathrm{C}-\mathrm{P}}=18.7, J_{\mathrm{CH} 2-\mathrm{CH} 2}=7.3, \mathrm{CH}_{2}-\mathbf{C H}_{2^{-}}\right.$
P); 1.34-1.24 (m, 18H, CH3 $) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 153.97$ (6); 149.92 (2); 149.85 (4); 142.87 (8); 118.82 (5); 78.56 (d, $J_{2}{ }^{\wedge}-\mathrm{P}=10.3$); 71.20 (m, CH-iPr); 69.47 (3‘); $65.60\left(\mathbf{C H}_{2}-\mathrm{O}-3^{`}\right)$; 64.99 (d, $J_{\mathrm{C}-\mathrm{P}}=168.7, \mathbf{C H}_{2}-\mathrm{O}-2^{`}$); 61.72 (d, $J_{\mathrm{C}-\mathrm{O}-\mathrm{P}}=6.5, \mathbf{C H}_{2}-\mathrm{O}-\mathrm{P}$); 44.42 ($1^{`}$); 26.86 (d, $J_{\mathrm{C}-\mathrm{P}}$ $\left.=140.3, \mathrm{CH}_{2}-\mathbf{C H}_{2}-\mathrm{P}\right) ; 24.02-23.90\left(\mathrm{~m}, \mathrm{CH}_{3}-i \mathrm{Pr}\right) ; 16.42\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{P}}=6.0, \mathrm{CH}_{2}-\mathbf{C H}_{3}\right)$; For $\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{O}_{8} \mathrm{P}_{2}$ (551.51) calcd: C, 45.73; H, 7.13; P, 11.23. Found: C, 45.53; H, 7.28; P, 11.19.

References:

${ }^{1)}$ Baszczynski, O.; Jansa, P.; Dracinsky, M.; Klepetarova, B.; Holy, A.; Votruba, I.; De Clercq, E.; Balzarini, J.; Janeba, Z.: Bioorg. Med. Chem. Vol. 19(7), 2114-2124.

1.4. Example of the NMR spectra of the selected products

$\begin{array}{llllllllllllll}140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array} \quad \mathrm{ppm}$

Electronic Supplementary Material (ESI) for RSC Advances

