# Suporting Information (SI) for

### Salts of 1-(Chloromethyl)-1,1-dimethylhydrazine and Ionic Liquids

by Carles Miró Sabaté,\* Henri Delalu, Valérian Forquet and Erwann Jeanneau

#### **Experimental Section**

#### **General Method**

All solvents and chemicals were used as supplied by Sigma-Aldrich Inc. and/or Fisher Scientific without further purification. Sodium 5,5'-azotetrazolate pentahydrate,<sup>1</sup> barium 5,5'azotetrazolate pentahydrate<sup>2</sup> and barium 5-amino-1*H*-tetrazolate tetrahydrate<sup>3</sup> were synthesized as previously reported. Barium picratre hexahydrate<sup>4</sup> was synthesized by a literature modified procedure as described below. <sup>1</sup>H, <sup>13</sup>C, <sup>35</sup>Cl and <sup>14/15</sup>N NMR spectra were recorded on a DRX400 Bruker instrument. The spectra were measured in DMSO-d<sub>6</sub> at 25 °C unless otherwise specified. The chemical shifts are given relative to tetramethylsilane (<sup>1</sup>H, <sup>13</sup>C), sodium chloride (<sup>35</sup>Cl) or ammonia (<sup>15</sup>N) as external standards. Infrared (IR) spectra were recorded at room temperature on a Perkin-Elmer Spectrum instrument equipped with a Universal ATR sampling accessory. Raman spectra were recorded on a Perkin-Elmer Spectrum 2000R NIR FT-Raman instrument equipped with a Nd:YAG laser (1064 nm). IR intensities are given in parentheses as vw = very weak, w = weak, m = medium, s = strong and vs = very strong. Raman activities are reported in percentages relative to the most intense peak and are given in parentheses. Elemental analyses were performed with a Netsch Simultanous Thermal Analyzer STA 429. Melting points were determined by differential scanning calorimetry (SETARAM DSC131 instrument, calibrated with standard pure indium and zinc). Measurements were performed at a heating rate of  $\beta = 5$  °C min<sup>-1</sup> in closed aluminium containers with a hole (1 mm) on the top for gas release with a nitrogen flow of 20 mL min<sup>-1</sup>. The reference sample was a closed aluminium container.

# Synthesis of (CH<sub>3</sub>)<sub>2</sub>N(CH<sub>2</sub>Cl)NH<sub>2</sub>]Cl (1)

**Method 1** (modified from ref. <sup>12</sup>): 1,1-dimethylhydrazine (0.36 mL, 4.73 mmol) was dissolved in dichloromethane (5.0 mL, 78.12 mmol) under an inert atmosphere of nitrogen to give a colorless solution, which was stirred at room temperature for 38 h. After this time, a colorless solid had formed. The solvent was then decanted and the remaining solid was washed with fresh dichloromethane and dried under high-vacuum (0.512 g, 75%). The pure solid is hygroscopic.

**Method 2** (large scale procedure): 1,1-dimethylhydrazine (15.0 mL, 197.08 mmol) was loaded into a 250 mL Schlenk flask containing dichloromethane (150.0 mL, 2.344 mol). Single crystals of **1** precipitated upon stirring overnight (18.052 g, 63%).  $\rho$  (X-ray) = 1.163 g cm<sup>-3</sup>; C<sub>3</sub>H<sub>8</sub>N<sub>2</sub>Cl<sub>2</sub> (MW = 143.01 g mol<sup>-1</sup>, calc./found): C 25.19 / 25.02, H 5.64 / 5.51, N 19.59 / 19.36; DSC (5 °C min<sup>-1</sup>): 108–109 °C (m.p.), 158 °C (rash dec.); m/z (ESI<sup>+</sup>, 70 eV, >5%): 60.0(7), 75(10),

109(100, C<sup>+</sup>), 111(34), 129.1(5), 131.1(7), 252.9(100,  $[C_2CI]^+$ ), 398.8(36,  $[C_3CI_2]^+$ ), 544.8(46,  $[C_4CI_3]^+$ ), 654.9(33), 688.8(100,  $[C_5CI_4]^+$ ), 800.7(24), 832.7(65,  $[C_6CI_5]^+$ ); <sup>1</sup>H NMR (DMSO-d<sub>6</sub>, 400.18 MHz, TMS)  $\delta$ /ppm: 3.40 (6 H, s, -CH<sub>3</sub>), 5.62 (2 H, s, -CH<sub>2</sub>Cl), 6.66 (2 H, s(br), -NH<sub>2</sub>); <sup>13</sup>C [<sup>1</sup>H] NMR (DMSO-d<sub>6</sub>, 100.52 MHz, TMS)  $\delta$ /ppm: 71.60 (1 C, -CH<sub>2</sub>Cl), 53.16 (2 C, N-CH<sub>3</sub>); <sup>35</sup>Cl NMR (DMSO-d<sub>6</sub>, 49.03 MHz, NaCl)  $\delta$ /ppm: 70.4 (Cl<sup>-</sup>); Raman  $\tilde{\nu}$  /cm<sup>-1</sup> (rel. int.): 3168(7), 3059(47), 3032(98), 3022(60), 3007(51), 2963(45), 2939(51), 2882(12), 2833(6), 1451(15), 1350(3), 1304(4), 1249(3), 1162(2), 1102(3), 980(11), 918(10), 892(16), 807(12), 739(100), 502(2), 477(6), 439(11), 368(12), 245(5); IR  $\tilde{\nu}$  /cm<sup>-1</sup> (golden gate, rel. int.): 3155(m) 3099(m) 3019(s) 3007(s) 2884(w) 2686(w) 2169(w) 1780(w) 1694(w) 1631(m) 1468(m) 1447(w) 1430(w) 1398(w) 1351(m) 1305(w) 1242(m) 1159(m) 1118(m) 1099(m) 1009(w) 981(w) 922(m) 890(s) 798(s) 738(w) 619(w) 590(w) 569(w).

#### Synthesis of (CH<sub>3</sub>)<sub>2</sub>N(CH<sub>2</sub>Cl)NH<sub>2</sub>]<sub>2</sub>[SO<sub>4</sub>] (6)

1 (4.198 g, 28.95 mmol) and silver sulfate (4.559 g, 14.48 mmol) were loaded in a Schlenk flask filled with dry nitrogen and distilled water (25 mL) was added giving a suspension, which was stirred for 4 h at room temperature and under the exclusion of light. After this time, a pale vellow solution had formed and the insoluble silver chloride was filtered and washed thoroughly with distilled water. The solvent was then stripped under reduced pressure leaving behind a colorless semicrystalline solid (4.243 g, 93 %). Single crystals of the compound suitable for Xray analysis formed upon slow evaporation of a methanolic solution.  $\rho$  (X-ray) = 1.549 g cm<sup>-3</sup>;  $C_6H_{20}Cl_2N_4O_4S$  (MW = 315.22 g mol<sup>-1</sup>, calc./found): C 22.86 / 22.56, H 6.40 / 6.49, N 17.77 / 17.42; DSC (5 °C min<sup>-1</sup>): 62.0 °C (m.p.), >180 °C (dec.); m/z (+c ESI): 109.1 (100,  $[Cat^+]$ ), 254.9 (29, [2 CatA]), 315.9 (6,  $[M + H^+]$ ), 422.9 (91,  $[Cat_3A]$ ), 738.9 (36,  $[Cat_5A_2]$ ); m/z (-c ESI): 97.0 (51,  $[A^{2-} + H^{+}]$ ), 726.8 (100,  $[Cat_{4}A_{3} + H^{+}]$ ), 932.8 (48,  $[Cat_{6}A_{4} + H^{+}]$ ); <sup>1</sup>H NMR (DMSO-d<sub>6</sub>, 400.18 MHz, TMS) δ/ppm: 3.31 (6 H, s, -CH<sub>3</sub>), 5.37 (2 H, s, -CH<sub>2</sub>Cl), 6.28 (2 H, s(br), -NH<sub>2</sub>); <sup>13</sup>C [<sup>1</sup>H] NMR (DMSO-d<sub>6</sub>, 100.52 MHz, TMS) δ/ppm: 72.28 (2 C, -CH<sub>2</sub>Cl), 53.55 (4 C, N-CH<sub>3</sub>); Raman  $\tilde{\nu}$  /cm<sup>-1</sup> (rel. int.): 3087(10), 3050(35), 3033(62), 2975(48), 2791(3), 1456(15), 1439(7), 1400(2), 1356(3), 1316(3), 1232(2), 1124(4), 1015(5), 970(100), 926(6), 896(9), 799(11), 742(94), 615(3), 503(4), 482(2), 449(5), 436(6), 389(2), 367(9), 312(1), 280(2), 240(4); IR  $\tilde{\nu}$  /cm<sup>-1</sup> (golden gate, rel. int.): 3388(w) 3208(w) 3032(m) 1635(w) 1476(w) 1448(w) 1400(w) 1353(w) 1312(w) 1252(w) 1165(w) 1131(m) 1105(m) 10 yfg45(s) 1017(m) 968(w) 929(w) 893(m) 789(m) 738(w) 705(w) 673(w) 652(w) 609(vs) 538(w) 495(w) 478(w).

## Synthesis of Silver Azide (AgN<sub>3</sub>)

Silver nitrate (0.849 g, 5.00 mmol) was dissolved in distilled water (10 mL) and a solution of sodium azide (0.325 g, 5.00 mmol) in the same solvent (10 mL) was added slowly under slow

stirring. After the addition was finished, the reaction mixture was covered with aluminium paper and the reaction was left to reach completion. After ca. 20 min, the insoluble (<u>highly sensitive!</u>) silver azide was filtered by gravity, washed with water and acetone and left to air dry overnight. After this time, the silver azide was loaded into a plastic flask and stored in an explosive cage under the exclusion of light previous to immediate use (0.710 g, 95%).

### Synthesis of Barium Picrate Tetrahydrate (Ba[(NO<sub>2</sub>)<sub>3</sub>Ph–O]<sub>2</sub>\*4H<sub>2</sub>O)

Picric acid (2.300 g, 10.04 mmol) was loaded in a 100 mL plastic beaker and dissolved in distilled water (55 mL) at ca. 90 °C (a small amount of picric acid remained undissolved). At this point 98% barium hydroxide octahydrate (1.616 g, 5.02 mmol) was added portion-wise as the neat solid resulting in the formation of a clear bright orange solution, which was further stirred at this temperature for 30 min. A crystalline solid precipitated upon cooling to room temperature that was recrystallized twice from hot water (2.360 g, 71%) and used for the synthesis of the picrate salt in this work. Single crystals of the hexahydrate suitable for X-ray analysis formed upon recrystallization from hot water.  $C_{12}H_{12}N_6O_{18}Ba$  (MW = 665.58 g mol<sup>-1</sup>, calc./found): C 21.65 / 21.79, H 1.81 / 1.76, N 12.62 / 12.46; DSC (5 °C min<sup>-1</sup>): 35-45, 45-75, 75–90 and 125–150 °C (water loss),  $\geq$ 315 °C (EX. dec.); m/z (+c ESI): 366.0 (61, [CatA]<sup>+</sup>), 959.7 (100,  $[Cat_2A_3]^+$ ), 1553.2 (25,  $[Cat_3A_5]^+$ ); m/z (-c ESI): 228.1 (34,  $[A]^-$ ), 478.7 (3,  $[A_2Na]^{-}$ , 723.9 (24), 821.8 (53,  $[A_3Cat]^{-}$ ), 974.7 (100), 1415.5 (70,  $[A_5Cat_2]^{-}$ ); <sup>1</sup>H NMR (DMSO-d<sub>6</sub>, 400.18 MHz, TMS) δ/ppm: 8.59 (4 H, s, H–Ar), 3.50 (8 H, s, H<sub>2</sub>O); <sup>13</sup>C [<sup>1</sup>H] NMR (DMSO-d<sub>6</sub>, 100.52 MHz, TMS) δ/ppm: 160.86 (1 C, C1), 141.81 (2 C, C2), 125.26 (2 C, C3), 124.42 (1 C, C4); Raman  $\tilde{\nu}$  /cm<sup>-1</sup> (rel. int.): 3077(2), 1556(21), 1521(3), 1492(15), 1370(41), 1347(61), 1322(100), 1289(22), 1168(7), 1085(4), 945(15), 916(6), 827(35), 788(2), 750(4), 705(5), 546(2), 521(1), 366(1), 335(5), 162(6); IR  $\tilde{\nu}$  /cm<sup>-1</sup> (golden gate, rel. int.): 3500(w) 3075(w) 1629(m) 1609(m) 1552(s) 1514(m) 1487(m) 1431(w) 1366(m) 1329(s) 1269(s) 1165(m) 1085(m) 934(w) 915(m) 838(w) 820(w) 795(w) 787(m) 744(m) 712(m) 702(m) 540(w) 499(w) 474(w).

### X-ray Crystal Structure Discussion

An Oxford Diffraction Xcalibur 3 diffractometer equipped with a CCD detector using the CrysAlis Pro software was used for the measurements and data reduction.<sup>5</sup> All data were collected using graphite-monochromated Mo-K<sub>a</sub> radiation ( $\lambda = 0.71073$  Å). The structures were solved by direct methods and refined by means of full-matrix least-squares procedures using WinGX and the available software in the package.<sup>6-9</sup> Finally, the structures were checked using *PLATON*.<sup>10</sup> The absorption corrections were performed using a *SCALE3 ABSPACK* multi-scan method.<sup>11</sup> All non-hydrogen atoms were refined anisotropically, whereas the hydrogen atoms were located from difference Fourier electron density maps and refined isotropically.

Table 3 contains data for the crystal structure solution and refinement for compounds **3**, **6**, **7**, **8** and Ba[(NO<sub>2</sub>)<sub>3</sub>Ph-O]<sub>2</sub>\*6H<sub>2</sub>O. Table 4 collects selected bond distances and angles for the  $[(CH_3)_2N(CH_2Cl)NH_2]^+$  cation and comparison with the optimized values by density functional theory calculations using B3LYP/6-311+G(d,p) levels of theory. Lastly, the hydrogen-bonding geometry of all compounds and the coordination around the Ba<sup>2+</sup> cations in Ba[(NO<sub>2</sub>)<sub>3</sub>Ph-O]<sub>2</sub>\*6H<sub>2</sub>O are summarized in Tables 2 and 3 from the supporting information. Further information concerning the crystal structure determination (excluding structure factors) in CIF format is available from the Cambridge Crystallographic Data Centre.<sup>13</sup>

Compounds **3**, **7** and  $(Ba[(NO_2)_3Ph-O]_2*6H_2O)$  have triclinic cells of the space group *P*-1 (Table 3), whereas **6** and **8** crystallize in monoclinic cells in the space group  $C_2/c$ . In Table 4 the computed bond lengths and angles are listed following the corresponding data obtained for single crystals of salts **3**, **6**, **7** and **8**. The optimized gas phase structure of the cation is essentially the same as that observed from experimental data, i.e., the computed bond lengths and angles are consistent with the X-ray data. The slightly longer calculated values can be attributed to the lack of molecular packing in the gas phase. The average angle around the central nitrogen atom (N3) is close to the ideal tetrahedral angle. The N3-N6 bond distance (ca. 1.45 Å) is in keeping with the N-N distance found in 1,1-dimethylhydrazine<sup>14</sup> and is typical for N-N single bonds.<sup>15</sup> The distances between the amino hydrogen atoms of the [(CH<sub>3</sub>)<sub>2</sub>N(CH<sub>2</sub>Cl)NH<sub>2</sub>]<sup>+</sup> cations and the anions in all compounds are shorter than the minimum N-N and N-O non-bonded distance, indicating that both amino hydrogen atoms form hydrogen-bonds to the anion (Table 5).

The sulphur atom of the  $[SO_4]^{2-}$  anion in  $[(CH_3)_2N(CH_2Cl)NH_2]_2[SO_4]$  (6) lies on a symmetry plane so that half of the formula unit is generated by symmetry (symmetry code: (i) 2–x, y, 0.5–z). As introduced above, the geometry of the cation with the –CH<sub>2</sub>Cl group pointing in the opposite direction of the N–NH<sub>2</sub> moiety is reminiscent of that of  $[Me_2N(CH_2Cl)NH_2]Cl$  (1).



**Fig. 1** Hydrogen-bonding in the crystal structure of  $[(CH_3)_2N(CH_2Cl)NH_2]_2[SO_4]$  (6) with the labeling scheme (Diamond plot at 50% probability). The dashed lines represents hydrogen-bonding between the  $[(CH_3)_2N(CH_2Cl)NH_2]^+$  cations and the  $[SO_4]^{2-}$  anions.

The  $[SO_4]^{2-}$  anions have the expected tetrahedral geometry<sup>16</sup> with two different S–O distances (S7–O8 and S7–O9). This can be attributed to the fact that O9 does not participate in the formation of classical hydrogen bonds (shortest contact: C2•••O9 = 3.203(7) Å), whereas O8 forms two crystallographically independent hydrogen bonds (Table 5) and, in consequence, the S7–O8 distance is slightly elongated in comparison to the S7–O9 distance (1.491(3) Å *vs.* 1.460(3) Å). These two hydrogen-bonds form dimeric interactions of the type **D1,1(2)** [**D2,2(5)**] (primary level) and combine at the secondary level to form ring patterns of the type **R2,4(8)** with **C2,2(6)** infinite chains along the *c*-axis, which connect the dimer pairs depicted in Fig. 1). These latter graph-sets are analogous to those of the perchlorate salt (see discussion above), as might be expected from the strong similarities in the geometry between the  $[SO_4]^{2-}$  and the  $[CIO_4]^{-}$  anions. In contrast to the perchlorate salt, however, these dimer pairs interact only *via* unclassical hydrogen-bonds along the *a*- and *b*-directions (Fig. 2).



**Fig. 2** Unit cell of  $[(CH_3)_2N(CH_2Cl)NH_2]_2[SO_4]$  (6, view along the *c*-axis) with hydrogen-bonding (dotted lines).

Fig. 3 shows the asymmetric unit of  $[(CH_3)_2N(CH_2Cl)NH_2]_2[N_4C-N=N-CN_4]$  (7), which is made up of one  $[N_4C-N=N-CN_4]^{2-}$  anion and two crystallographically independent  $[(CH_3)_2N(CH_2Cl)NH_2]^+$  cations. As pointed out in the introductory discussion of this section, the orientation of the  $-CH_2Cl$  group in both cations is different. While one of the two cations has the  $-CH_2Cl$  and  $N-NH_2$  moieties pointing in opposite directions, the other cation shows a rotation of the N3–N6 bond and in analogy to the perchlorate salt, it forms an intramolecular hydrogen-bond (N6•••Cl1 = 3.134(2) Å), which describes an **S(5)** ring graph-set.



**Fig. 3** Asymmetric unit of  $[(CH_3)_2N(CH_2Cl)NH_2]_2[N_4C-N=N-CN_4]$  (7) with the labeling scheme (Diamond plot at 50% probability). The dashed lines represent hydrogen-bonding.

The  $[N_4C-N=N-CN_4]^{2-}$  anions in  $[(CH_3)_2N(CH_2CI)NH_2]_2[N_4C-N=N-CN_4]$  (7) form planar layers with an interlayer distance N21-N23<sup>viii</sup> = 3.590(3) Å (symmetry code: (viii) 2-x, 1-y, z). Like for the remainder of the salts of the  $[(CH_3)_2N(CH_2CI)NH_2]^+$  cation in this work, there exist many unclassical hydrogen-bonds in the structure of the compound (Table 5), the most important one between one of the methyl group hydrogen atoms in the cation and one ring nitrogen of the anion (C11•••N21<sup>v</sup> = 3.269(3) Å; symmetry code: (v) 1-x, 1-y, -z). Fig. 4 shows a view of the classical hydrogen-bonding around the  $[N_4C-N=N-CN_4]^{2-}$  anion. Every anion is acceptor of four classical hydrogen-bonds by four cations. These hydrogen-bonds make dimeric interactions of the type **D1,1(2)** at the unitary level, whereas at the secondary level, there exists finite chain patterns with the descriptor **D2,2(X)** (X = 4, 5, 8, 9) and **R4,4(X)** (X = 10, 20) ring graph-sets, but no infinite chain networks. The ring graph-sets are depicted in Fig. 4. The **R4,4(10)** motifs are formed by the interaction of two tetrazole rings with two cations (N6•••N15 = 3.213(3) Å and N6•••N16<sup>vii</sup> = 3.026(3) Å; symmetry code: (vii) 1-x, -y, 1-z) and the larger **R4,4(20)** involve hydrogen-bonding between four tetrazole rings and two cations (N12•••N24<sup>iii</sup> = 2.989(3) Å and N12•••N14<sup>vii</sup> = 3.074(3) Å; symmetry codes: (iii) 2-x, 1-y, -z; (vi) x, y, -1+z).



**Fig. 4** Ring hygrogen-bonding (dotted lines) networks in the crystal structure of  $[(CH_3)_2N(CH_2Cl)NH_2]_2[N_4C-N=N-CN_4]$  (7, for simplification purposes only the  $-NH_2$  groups of the  $[(CH_3)_2N(CH_2Cl)NH_2]^+$  cations are represented).



**Fig. 5** Packing around the  $Ba^{2+}$  cations in the crystal structure of  $Ba[(NO_2)_3Ph-O]_2*6H_2O$  and labelling scheme (Diamond ellipsoids at 50 % probability). Dashed lines indicate coordination to the  $Ba^{2+}$  cations.

Barium picrate was used for the synthesis of  $[(CH_3)_2N(CH_2CI)NH_2][(NO_2)_3Ph-O]$  (8). After recrystallization from hot water of the tedrahydrate, single crystals of the hexahydrate salt (Ba[(NO<sub>2</sub>)<sub>3</sub>Ph–O]<sub>2</sub>\*6H<sub>2</sub>O) formed. The asymmetric unit of the compound is represented in Fig. 5. The Ba<sup>2+</sup> cations have a coordination number of 10 with Ba–O distances which vary within a relatively narrow range (ca. 2.7–3.1 Å, Table 6) and are slightly shorter than, for example, for 5,5'-hydrazine-1,2-diylbis(1*H*-tetrazolate) pentahvdrate<sup>17</sup> barium or barium 5.5'azobistetrazolate pentahydrate.<sup>18</sup> The coordination environment of the Ba<sup>2+</sup> cations is completed by interactions to the phenolate oxygen atoms of the picrate anions (O1 and O17), to the nitrogroup oxygen atoms of the picrate anions (O19, O28 and O32) and to the oxygen atoms of all molecules of crystal water except for O38 (Ba–O38 = 4.673(3) Å), which is only involved in the formation of hydrogen-bonding. The Ba[(NO<sub>2</sub>)<sub>3</sub>Ph-O]<sub>2</sub>\*6H<sub>2</sub>O units are connected by coordination (O28<sup>i</sup>–Ba = 3.002(3) Å; symmetry code: (i) x, 1+y, z) and form infinite chains along a direction approximately parallel to the *b*-axis (Fig. 5). Additionally, the aromatic rings of the two picrate anions interact via  $\pi$ -stacking. The -NO<sub>2</sub> groups of the picrate anions are tilted off the plane of the aromatic ring. For one of the two crystallographically independent anions, the p-NO<sub>2</sub> group is essentially coplanar to the ring (dihedral angle C6–C5–N11–O13 = ca. 2°), whereas the o-NO<sub>2</sub> groups are tilted by ca. 32°. For the other anion, the p-NO<sub>2</sub> is tilted ca. 12°, whereas the two o-NO<sub>2</sub> groups are twisted ca. 23 and 44°. The difference in the tilt angle of the -NO<sub>2</sub> groups is probably related to packing effects and hydrogen bonding.<sup>19</sup>



**Fig. 6** a) Schematic representation of the ring graph-sets found in the crystal structure of  $Ba[(NO_2)_3Ph-O]_2*6H_2O$  and b) unit cell of  $Ba[(NO_2)_3Ph-O]_2*6H_2O$  (view along the *b*-axis) with hydrogen-bonding (dotted lines). The coordination around the  $Ba^{2+}$  cations has been omitted for clarity purposes.

Fig. 6b shows a representation of the unit cell of the compound with the hydrogen-bonding (dotted lines). The compound forms, considering only the benzene rings, planar layers on the *bc*-plane with infinite  $\pi$ -stacks of anions along the *a*-axis. The layers are connected by extensive hydrogen-bonding to water molecules, which form a total of 14 medium-to-strong hydrogen bonds. The extensive hydrogen-bonding found in the structure of the compound can be better understood by looking at the hydrogen-bonding graph-sets. At the primary level, each one of the 14 hydrogen bonds is only involved in **D1,1(2)** dimeric interactions. The secondary level is highly dominated by dimeric interactions of the type D1,2(3), D2,1(3) and D2,2(X) (X = 4, 5, 7, 7) 9) and additionally some ring graph-sets with the descriptor  $\mathbf{R2,1(X)}$  (X = 4, 6) and  $\mathbf{R4,4(8)}$  are also found. No infinite chain interactions of the type Ca,b,(X) where identified by the program RPLUTO. Fig. 6a gives an schematic representation of the ring hydrogen-bonding networks found in the crystal structure. The R4,4(8) motifs are formed by interaction between four molecules of crystal water (O38•••O37 = 2.821(5) Å and O37•••O38<sup>vii</sup> = 2.798(5) Å; symmetry code: (vii) 2-x, -y, -z), whereas the **R2,1(4)** and **R2,1(6)** networks are formed by interaction of one molecule of crystal water with the p-NO<sub>2</sub> group (O36•••O12<sup>v</sup> = 2.908(5) Å and O36•••O13<sup>v</sup> = 3.168(5) Å; symmetry code: (v) x, -1+y, z) and with one of the o-NO<sub>2</sub> groups and the phenolate oxygen atom (O35•••O1<sup>i</sup> = 2.741(5) Å and O35•••O16<sup>i</sup> = 3.044(5) Å; symmetry code: (i) -1+x, y, z), respectively.



Fig. 7 Unit cell of  $[(CH_3)_2N(CH_2Cl)NH_2][(NO_2)_3Ph-O]$  (8, view along the *b*-axis) with hydrogenbonding (dotted lines).

In  $[(CH_3)_2N(CH_2CI)NH_2][(NO_2)_3Ph-O]$  (8), one of the -NO<sub>2</sub> groups of the picrate anion is nearly coplanar to the benzene ring (C8-C9-N14-O15 = 0.2°), one is slightly tilted (C10-C11-N17-O18 = 9.0°) and one is more significantly off the aromatic plane (C12-C13-N20-O22 = 32.3°). Fig. 7 shows a view of the unit cell of the compound. The two hydrogen atoms of the N-NH<sub>2</sub> moiety in the cation are involved in two hydrogen bonds each forming dimer pairs that interact with other dimer pairs through, at least, one of the 9 unclassical C•••O hydrogen bonds summarized in Table 5 and that are common for picrate salts.<sup>7</sup>



**Fig. 8** Hydrogen-bonding in the crystal structure of  $[(CH_3)_2N(CH_2Cl)NH_2][(NO_2)_3Ph-O]$  (8) with the labeling scheme (Diamond plot at 50% probability). The dashed lines represents hydrogen-bonding between the  $[(CH_3)_2N(CH_2Cl)NH_2]^+$  cations and the  $[(NO_2)_3Ph-O]^-$  anions.

The structure of one of these hydrogen-bonded dimer pairs is represented in Fig. 8. The first level hydrogen-bonding network of the compound is made up of four **D1,1(2)** dimeric interactions, whereas at the secondary level, ring graph-sets of the type **R2,1(X)** (X = 4, 6), **R2,4(8)** and **R4,4(X)** (X = 12, 16) are formed. Similarly to what is found for  $[(CH_3)_2N(CH_2Cl)NH_2]_2[N_4C-N=N-CN_4]$  (6), no infinite chain motifs can be identified. These hydrogen-bonding networks are also depicted in Fig. 8. For example, the **R4,4(12)** graph-sets are formed by the interaction of two cations and two anions (N6•••O16<sup>i</sup> = 3.309(3) Å and N6•••O15<sup>iii</sup> = 2.917(3) Å; symmetry codes: (i) x, 1–y, 0.5+z; (iii) 1–x, 1–y, 1–z) whereas the combination of N6•••O16<sup>i</sup> and N6•••O7<sup>iii</sup> = 2.841(3) Å results in the formation of the larger **R4,4(16)** ring motifs.

|    | $v_{scal}$      | Icalc/ Acalc          | $v_{meas}$          | $v_{meas}$           | Mode                                |
|----|-----------------|-----------------------|---------------------|----------------------|-------------------------------------|
|    | $(cm^{-1})^{a}$ | IR/Raman <sup>b</sup> | $(IR, cm^{-1})^{c}$ | $(Raman, cm^{-1})^d$ | Assignment <sup>e</sup>             |
| 1  | 103             | 4/1                   |                     |                      | <u>ω(C-H)</u>                       |
| 2  | 217             | 2/-                   |                     |                      | $\omega$ (C-H) + $\omega$ (N-H)     |
| 3  | 224             | 21/1                  |                     |                      | $\omega$ (C-H) + $\gamma$ (N-H)     |
| 4  | 256             | 21/1                  |                     | 245(5)               | $\omega$ (C-H) + $\gamma$ (N-H)     |
| 5  | 267             | 12/-                  |                     |                      | $\omega$ (C-H) + $\omega$ (N-H)     |
| 6  | 339             | -1/2                  |                     |                      | $\delta$ (C-N-N) + $\delta$ (C-N-C) |
| 7  | 347             | 1/1                   |                     | 360(5)               | ω(С-Н)                              |
| 8  | 413             | 3/1                   |                     |                      | $\delta$ (C-N-N) + $\delta$ (C-N-C) |
| 9  | 446             | 6/1                   |                     | 440(5)               | $\tau$ (C-H) + $\tau$ (N-H)         |
| 10 | 485             | 3/2                   |                     | 480(5)               | $\delta$ (C-N-N) + $\delta$ (C-N-C) |
| 11 | 693             | -/20                  | 565(w)              |                      | $v_s(N-C)$                          |
| 12 | 785             | 65/2                  | 740(m)              | 740(60)              | v(N-N) + v(C-Cl)                    |
| 13 | 813             | 60/5                  | 800(m)              | 805(5)               | $\omega$ (N-H)                      |
| 14 | 866             | 20/5                  |                     |                      | ω(C-H)                              |
| 15 | 913             | 13/5                  | 890(m)              | 890(10)              | $\omega$ (N-H) + $\gamma$ (C-H)     |
| 16 | 961             | 4/1                   | 940(m)              | 970(10)              | $\omega$ (C-H) + $\tau$ (C-H)       |
| 17 | 1002            | 60/5                  |                     |                      | $\omega$ (N-H) + $\tau$ (C-H)       |
| 18 | 1076            | _/_                   | 1045(w)             |                      | $\tau$ (C-H) + $\tau$ (N-H)         |
| 19 | 1098            | 2/1                   | 1095(w)             | 1120(1)              | $\tau$ (C-H) + $\tau$ (N-H)         |
| 20 | 1180            | 2/3                   | 1165(w)             | 1160(1)              | $\tau$ (C-H) + $\tau$ (N-H)         |
| 21 | 1201            | 4/1                   |                     | 1200(1)              | $\tau$ (C-H) + $\tau$ (N-H)         |
| 22 | 1251            | 1/3                   | 1245(w)             | 1250(5)              | $\tau$ (C-H) + $\tau$ (N-H)         |
| 23 | 1306            | 14/2                  | 1300(w)             | 1295(5)              | $\gamma$ (C-H) + $\gamma$ (N-H)     |
| 24 | 1352            | 6/1                   | 1340(w)             |                      | $\gamma$ (C-H) + $\gamma$ (N-H)     |
| 25 | 1387            | 5/1                   |                     |                      | γ(C-H)                              |
| 26 | 1405            | 6/3                   | 1390(w)             |                      | γ(C-H)                              |
| 27 | 1418            | 5/7                   |                     |                      | $\delta$ (C-H)                      |
| 28 | 1421            | 1/10                  |                     |                      | $\delta$ (C-H)                      |
| 29 | 1429            | 6/3                   | 1430(w)             |                      | $\delta$ (C-H)                      |
| 30 | 1448            | 33/1                  | 1450(m)             | 1450(10)             | $\delta$ (C-H)                      |
| 31 | 1454            | 42/2                  | 1470(m)             |                      | $\delta$ (C-H)                      |
| 32 | 1612            | 55/2                  | 1620(m)             |                      | $\delta(N-H)$                       |
| 33 | 2951            | -/45                  |                     | 2880(30)             | $v_s(C-H)$                          |
| 34 | 2959            | 1/139                 | 2990(w)             | 2980(60)             | $v_s(C-H)$                          |
| 35 | 2991            | 3/84                  | 3030(m)             | 3050(30)             | $v_s(C-H)$                          |
| 36 | 3041            | -/25                  |                     |                      | $v_s(C-H) + v_{as}(C-H)$            |
| 37 | 3047            | -/30                  |                     |                      | $v_s(C-H) + v_{as}(C-H)$            |
| 38 | 3053            | -/40                  |                     |                      | $v_{as}(C-H)$                       |
| 39 | 3066            | 1/19                  |                     |                      | $v_{as}(C-H)$                       |
| 40 | 3069            | 3/48                  | <b>21</b> 00 ( )    | 01-00/-0             | $v_{as}(C-H)$                       |
| 41 | 3332            | 26/94                 | 3180(m)             | 3170(5)              | $v_s(N-H)$                          |
| 42 | 3420            | 30/38                 | 3275(m)             |                      | v <sub>as</sub> (N-H)               |

Table 1 Calculated (scaled) and measured IR and Raman frequencies with intensity (IR) and activity (Raman) values for the  $[(CH_3)_2N(CH_2Cl)NH_2]^+$  cation.

<sup>*a*</sup> Calculated frequencies (B3LYP/6-311+G(d,p))<sup>20</sup> scaled by 0.9613;<sup>21</sup> <sup>*b*</sup> Calculated IR intensities and Raman activities. <sup>*c*</sup> Experimental IR frequencies and intensities in () brackets. <sup>*d*</sup> Experimental Raman frequencies and activities in () brackets. <sup>*e*</sup> Approximate description of vibrational modes:  $\nu$  = stretching,  $\delta$  = in-plane bending,  $\gamma$  = out-of-plane bending,  $\omega$  = in-plane rocking,  $\tau$  = torsion; as = asymmetric and s = symmetric.

|                                                                            | <sup>1</sup> H NMR |                     | <sup>13</sup> C NMR |                  | 14/15N NMR <sup>b</sup> |                                   |                                           |
|----------------------------------------------------------------------------|--------------------|---------------------|---------------------|------------------|-------------------------|-----------------------------------|-------------------------------------------|
|                                                                            | -CH <sub>3</sub>   | -CH <sub>2</sub> Cl | -NH <sub>2</sub>    | -CH <sub>3</sub> | -CH <sub>2</sub> Cl     | -N(CH <sub>3</sub> ) <sub>2</sub> | -NH <sub>2</sub>                          |
| $[(CH_3)_2N(CH_2Cl)NH_2]Cl$ (1)                                            | 3.40               | 5.62                | 6.66                | 53.16            | 71.60                   |                                   |                                           |
| $[(CH_3)_2N(CH_2Cl)NH_2][NO_3]$<br>(2)                                     | 3.31               | 5.34                | 6.22                | 53.15            | 71.57                   | +84.6 (s)                         | +115.6<br>( <sup>1</sup> <i>J</i> = 66.7) |
| $[(CH_3)_2N(CH_2Cl)NH_2][ClO_4]$ (3)                                       | 3.30               | 5.33                | 6.21                | 53.18            | 71.60                   |                                   |                                           |
| $[(CH_3)_2N(CH_2Cl)NH_2][N_3]$ (4)                                         | 3.33               | 5.42                | 6.42                | 53.43            | 72.09                   | +85 (s(br))                       | -                                         |
| $[(CH_3)_2N(CH_2Cl)NH_2][N(CN)_2]$<br>(5)                                  | 3.29               | 5.31                | 6.19                | 53.37            | 72.01                   |                                   |                                           |
| $[(CH_3)_2N(CH_2Cl)NH_2]_2[SO_4]$<br>(6)                                   | 3.31               | 5.37                | 6.28                | 53.55            | 72.28                   |                                   |                                           |
| $[(CH_3)_2N(CH_2CI)NH_2]_2$<br>[N <sub>4</sub> C-N=N-CN <sub>4</sub> ] (7) | 3.41               | 5.57                | 6.59                | 53.51            | 72.08                   |                                   |                                           |
| $[(CH_3)_2N(CH_2Cl)NH_2]$<br>$[(NO_2)_3Ph-O]$ (8)                          | 3.33               | 5.40                | 6.32                | 53.56            | 72.27                   |                                   |                                           |
| $[(CH_3)_2N(CH_2Cl)NH_2] \\ [H_2N-CN_4] (9)$                               | 3.37               | 5.52                | 6.53                | 53.34            | 71.93                   |                                   |                                           |

**Table 2** <sup>1</sup>H, <sup>13</sup>C and <sup>15</sup>N NMR chemical shifts (ppm) for the  $[(CH_3)_2N(CH_2CI)NH_2]^+$  cation in compounds **1–9**. <sup>*a*</sup>

<sup>*a*</sup> in DMSO-d<sub>6</sub>. <sup>*b*</sup> <sup>15</sup>N NMR for salt **2** and <sup>14</sup>N NMR for salt **4** (NH<sub>3</sub> as external standard;  $\delta$ (MeNO<sub>2</sub>) =  $\delta$ (NH<sub>3</sub>) – 381). One bond N–H coupling constant (<sup>1</sup>J) for compound **2** in Hz.

**Table 3** Crystal structure solution and refinement for salts of the  $[(CH_3)_2N(CH_2Cl)NH_2]^+$  cation.  $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma ||F_o|; R_w = [\Sigma (F_o^2 - F_c^2) / \Sigma w (F_o)^2]^{1/2}; w = [\sigma_c^2 (F_o^2) + (xP)^2 + yP]^{-1}, P = (F_o^2 - 2F_c^2) / 3.$ 

| Parameter                                 | 3                     | 6                      | 7                     | 8                                                              | BaPic <sup><i>a</i></sup> |
|-------------------------------------------|-----------------------|------------------------|-----------------------|----------------------------------------------------------------|---------------------------|
| CCDC N°                                   | 808540                | 808541                 | 808542                | 808543                                                         | 808544                    |
| Formula                                   | $C_3H_{10}Cl_2N_2O_4$ | $C_6H_{20}Cl_2N_4O_4S$ | $C_8H_{20}Cl_2N_{14}$ | C <sub>9</sub> H <sub>12</sub> N <sub>5</sub> ClO <sub>7</sub> | $C_{12}H_{16}N_6O_{20}Ba$ |
| $M_{\rm r}$ , g mol <sup>-1</sup>         | 209.03                | 315.22                 | 383.24                | 337.69                                                         | 701.63                    |
| <i>T</i> , K                              | 100(2)                | 110(2)                 | 110(2)                | 110(2)                                                         | 110(2)                    |
| Cryst. descr.                             | Plate                 | Block                  | Block                 | Plate                                                          | Needle                    |
| Cryst. color                              | Colorless             | Colorless              | Yellow                | Yellow                                                         | Yellow                    |
| Cryst. size                               | 0.52x0.23x0.04        | 0.27x0.17x0.11         | 0.47x0.24x0.16        | 0.55x0.25x0.14                                                 | 0.51x0.11x0.09            |
| Cryst. syst.                              | Triclinic             | Monoclinic             | Triclinic             | Monoclinic                                                     | Triclinic                 |
| space gr.                                 | <i>P</i> -1           | C2/c                   | P-1                   | C2/c                                                           | <i>P</i> -1               |
| <i>a</i> , Å                              | 5.983(1)              | 11.674(2)              | 8.851(1)              | 24.168(3)                                                      | 6.641(1)                  |
| <i>b</i> , Å                              | 7.502(1)              | 17.503(2)              | 8.872(1)              | 7.375(1)                                                       | 11.588(1)                 |
| <i>c</i> , Å                              | 9.335(1)              | 6.616(1)               | 11.529(1)             | 17.062(3)                                                      | 15.033(1)                 |
| α, °                                      | 93.86(1)              | 90                     | 80.98(1)              | 90                                                             | 84.64(1)                  |
| β, °                                      | 101.21(1)             | 90.27(1)               | 83.47(1)              | 116.19(2)                                                      | 80.07(1)                  |
| γ, °                                      | 91.13(1)              | 90                     | 71.37(1)              | 90                                                             | 86.80(1)                  |
| $V, Å^3$                                  | 409.8(1)              | 1351.8(3)              | 845.5(1)              | 1351.8(3)                                                      | 1133.8(1)                 |
| Z                                         | 2                     | 4                      | 2                     | 8                                                              | 2                         |
| $\rho$ , g cm <sup>-3</sup>               | 1.694                 | 1.549                  | 1.521                 | 1.644                                                          | 2.055                     |
| $\mu$ , cm <sup>-1</sup>                  | 6.99                  | 0.64                   | 0.41                  | 0.32                                                           | 1.86                      |
| <i>F</i> (000), e                         | 216                   | 664                    | 404                   | 1392                                                           | 692                       |
| θ range / °                               | 4.83-66.12            | 3.49-29.24             | 3.58-29.48            | 3.51-29.49                                                     | 3.40-29.57                |
| hkl range                                 | $-6 \le h \le 7$      | $-15 \le h \le 15$     | $-11 \leq h \leq 12$  | $-30 \le h \le 29$                                             | $-8 \le h \le 9$          |
|                                           | $-8 \leq k \leq 8$    | $-20 \leq k \leq 22$   | $-12 \leq k \leq 12$  | $-10 \le k \le 9$                                              | $-15 \le k \le 15$        |
|                                           | $-11 \le l \le 10$    | $-8 \le l \le 8$       | $-15 \le l \le 15$    | $-23 \le l \le 22$                                             | $-20 \le l \le 20$        |
| Refl. meas.                               | 5330                  | 2793                   | 21463                 | 10302                                                          | 28809                     |
| Refl. unique                              | 1418                  | 1553                   | 4325                  | 3343                                                           | 5785                      |
| $R_{\rm int}$ (data)                      | 0.057(1418)           | 0.061(1553)            | 0.065(4325)           | 0.039(3343)                                                    | 0.066(5785)               |
| Restr./Par.                               | 0/100                 | 0/79                   | 0/217                 | 0/199                                                          | 0/353                     |
| $R(F)/wR(F^2)$                            | 0.055/                | 0.083/                 | 0.071/                | 0.059/                                                         | 0.039/                    |
| (all refl.)                               | 0.153                 | 0.170                  | 0.189                 | 0.109                                                          | 0.077                     |
| GoF (F <sup>2</sup> )                     | 1.008                 | 0.985                  | 1.005                 | 0.995                                                          | 0.997                     |
| $\Delta  ho_{ m fin}$ , e Å <sup>-3</sup> | -0.55/                | -0.73/                 | -0.90/                | -0.57/                                                         | -1.86/                    |
| (max/min)                                 | 0.75                  | 0.98                   | 0.45                  | 0.57                                                           | 1.02                      |

<sup>*a*</sup> BaPic = Ba[(NO<sub>2</sub>)<sub>3</sub>Ph-O]<sub>2</sub>\*6H<sub>2</sub>O.

| Parameter <sup><i>a</i></sup> | 3     | 6         | 7 (A)       | 7(B)     | 8       | B3LYP <sup>b</sup> | MP2 <sup>c</sup> |
|-------------------------------|-------|-----------|-------------|----------|---------|--------------------|------------------|
| Cl1–C2                        | 1.76  | 9(2)1.777 | 7(5)1.758(2 | 2)1.767( | (2)1.76 | 7(2)1.768          | 1.747            |
| C2-N3                         | 1.50  | 6(3)1.498 | 8(6)1.511(3 | )1.503(  | (3)1.50 | 2(3)1.529          | 1.520            |
| N3-N6                         | 1.45  | 8(3)1.454 | (5)1.445(2  | 2)1.457( | (2)1.45 | 5(2)1.454          | 1.452            |
| N3-C4                         | 1.48  | 9(3)1.499 | 0(6)1.506(3 | )1.501(  | (3)1.49 | 9(3)1.509          | 1.502            |
| N3-C5                         | 1.50  | 6(3)1.493 | 6(6)1.494(3 | )1.492(  | (3)1.49 | 7(3)1.511          | 1.504            |
| Cl1-C2-N3                     | 110.: | 5(2)112.0 | (3)111.6(1  | )111.6(  | 1)112.  | 4(2)112.9          | 112.5            |
| C2-N3-N6                      | 113.  | 6(2)112.4 | (4)114.8(2  | 2)104.0( | (2)108. | 4(2)103.4          | 103.2            |
| C2-N3-C4                      | 111.  | 8(2)111.4 | (4)111.7(2  | 2)111.1( | (2)112. | 0(2)111.9          | 112.1            |
| N6-N3-C4                      | 108.  | 0(2)107.4 | (4)106.5(2  | )112.1(  | 2)107.  | 1(2)112.9          | 113.0            |
| C2-N3-C5                      | 107.  | 6(2)102.4 | (3)106.7(2  | 2)111.2( | (2)111. | 3(2)110.6          | 110.8            |
| N6-N3-C5                      | 106.  | 5(2)111.7 | (3)107.5(2  | )107.4(  | 2)107.  | 2(2)107.0          | 106.7            |
| C4-N3-C5                      | 109.  | 0(2)111.2 | 2(4)109.2(2 | 2)110.6( | (2)110. | 2(2)110.6          | 110.7            |

**Table 4** Experimental selected bond distances (in Å) and angles (in °) in the crystal structure of salts of the  $[(CH_3)_2N(CH_2Cl)NH_2]^+$  cation and comparison with the optimized parameters for the  $[(CH_3)_2N(CH_2Cl)NH_2]^+$  cation using DFT and MP2 methods.

<sup>*a*</sup> Symmetry code for **5**: (i) 2–x, y, 0.5–z; <sup>*b*</sup> B3LYP/6-31+G(d,p); <sup>*c*</sup> MP2/6-31++G(d,p).

| D–H•••A                                 | D-H (Å)               | H•••A (Å)                           | D•••A (Å)            | D–H•••A (°) |
|-----------------------------------------|-----------------------|-------------------------------------|----------------------|-------------|
|                                         |                       | 3                                   |                      |             |
| N6-H62•••Cl1                            | 0.8710(1)             | 2.820(4)                            | 3.117(5)             | 101.8(1)    |
| C2-H21•••O10                            | 0.9675(1)             | 2.455(5)                            | 3.363(5)             | 156.2(1)    |
| C4–H41•••O8                             | 0.9685(1)             | 2.507(5)                            | 3.428(5)             | 158.7(1)    |
| C2–H22•••O9 <sup>i</sup>                | 0.9781(1)             | 2.537(5)                            | 3.434(5)             | 152.4(1)    |
| C5–H51•••O9 <sup>i</sup>                | 0.9634(1)             | 2.567(5)                            | 3.469(5)             | 155.8(1)    |
| N6–H61•••O8 <sup>i</sup>                | 0.8696(1)             | 2.213(4)                            | 3.064(5)             | 166.0(1)    |
| C5–H52•••O8 <sup>ii</sup>               | 0.9491(1)             | 2.597(5)                            | 3.469(5)             | 152.7(1)    |
| N6–H62•••O9 <sup>iii</sup>              | 0.8709(1)             | 2.249(4)                            | 3.101(5)             | 165.9(1)    |
| ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |                       | 6                                   |                      |             |
| C2-H22•••O9                             | 0.9600(2)             | 2.300(4)                            | 3.203(7)             | 156.0(1)    |
| C2–H21•••O8                             | 0.9600(2)             | 2.350(3)                            | 3.291(7)             | 165.3(1)    |
| C4–H43•••O9 <sup>11</sup>               | 0.9500(2)             | 2.430(4)                            | 3.293(7)             | 150.8(1)    |
| N6-H62•••O8                             | 0.8600(2)             | 2.040(4)                            | 2.870(7)             | 164.0(1)    |
| N6–H61•••O8 <sup>111</sup>              | 0.8600(2)             | 2.090(4)                            | 2.907(7)             | 156.6(1)    |
| C11 1112 NO1                            | 0.0(0(1)              | 7                                   | 2 270(2)             | 120.0(1)    |
| C11-H113•••N21                          | 0.969(1)              | 2.588(3)                            | 5.5/9(3)             | 138.8(1)    |
| C2-H21•••N13                            | 0.957(1)              | 2.597(3)                            | 3.447(3)             | 148.1(1)    |
| C4–H43•••N19                            | 0.954(1)              | 2.559(3)                            | 3.400(3)             | 146.9(1)    |
| C4–H52•••N13                            | 0.971(1)              | 2.521(3)                            | 3.408(3)             | 151.8(1)    |
| C4–H41•••N22"                           | 0.964(1)              | 2.476(3)                            | 3.406(3)             | 161.7(1)    |
| C8–H82•••N23 <sup>m</sup>               | 0.952(1)              | 2.456(3)                            | 3.331(3)             | 152.6(1)    |
| C8–H81•••N23 <sup>1V</sup>              | 0.954(1)              | 2.472(3)                            | 3.402(3)             | 164.6(1)    |
| C11–H112•••N21 <sup>v</sup>             | 0.948(1)              | 2.499(3)                            | 3.269(3)             | 138.2(1)    |
| N6–H62•••Cl1                            | 0.860(1)              | 2.829(3)                            | 3.134(2)             | 102.8(1)    |
| N6-H62•••N15                            | 0.860(1)              | 2.386(3)                            | 3.213(3)             | 161.4(1)    |
| N12–H122•••N24 <sup>iii</sup>           | 0.872(1)              | 2.133(3)                            | 2.989(3)             | 166.7(1)    |
| N12–H121•••N14 <sup>vi</sup>            | 0.870(1)              | 2.238(3)                            | 3.074(3)             | 160.9(1)    |
| N6–H61•••N16 <sup>vii</sup>             | 0.876(1)              | 2.202(3)                            | 3.026(3)             | 156.5(1)    |
| <b>C2 1121</b> 010                      | 0.050(1)              | 8                                   | 2 2 42 (2)           | 120.0(1)    |
| C2-H21•••018                            | 0.950(1)              | 2.570(3)                            | 3.242(3)             | 128.0(1)    |
| C2-H21•••019                            | 0.950(1)              | 2.460(3)                            | 3.299(3)             | 147.0(1)    |
| C2-H22•••O16                            | 0.970(1)              | 2.480(3)                            | 3.336(3)             | 145.9(1)    |
| C4–H43•••O16 <sup>4</sup>               | 0.970(1)              | 2.460(3)                            | 3.317(3)             | 147.9(1)    |
| C5–H51•••O19"                           | 0.960(1)              | 2.380(3)                            | 3.269(3)             | 152.9(1)    |
| С5–Н53•••О7                             | 0.950(1)              | 2.460(3)                            | 3.223(3)             | 137.4(1)    |
| C4–H42•••O21 <sup>1V</sup>              | 0.980(1)              | 2.590(3)                            | 3.255(3)             | 125.1(1)    |
| C4–H42•••O22 <sup>1V</sup>              | 0.980(1)              | 2.590(3)                            | 3.558(3)             | 170.0(1)    |
| C12–H121•••O18 <sup>v</sup>             | 0.950(1)              | 2.430(3)                            | 3.352(3)             | 162.2(1)    |
| N6–H62•••O15 <sup>1</sup>               | 0.870(1)              | 2.410(3)                            | 3.259(3)             | 164.6(1)    |
| N6–H62•••O16 <sup>i</sup>               | 0.870(1)              | 2.570(3)                            | 3.309(3)             | 142.7(1)    |
| N6–H61•••O7 <sup>iii</sup>              | 0.860(1)              | 2.040(3)                            | 2.841(3)             | 156.0(1)    |
| N6–H61•••O15 <sup>iii</sup>             | 0.860(1)              | 2.300(3)                            | 2.917(3)             | 128.5(1)    |
|                                         | Ba[(NO <sub>2</sub> ) | <sub>3</sub> Ph-O] <sub>2</sub> *6H | I <sub>2</sub> O     | · ·         |
| O38–H382•••O37                          | 0.826(1)              | 2.013(4)                            | 2.821(5)             | 165.5(1)    |
| O33–H332•••O36 <sup>1</sup>             | 0.820(1)              | 2.071(4)                            | 2.832(5)             | 154.0(1)    |
| O35–H352•••O1 <sup>1</sup>              | 0.819(1)              | 2.011(4)                            | 2.741(5)             | 148.1(1)    |
| O35–H352•••O16 <sup>i</sup>             | 0.819(1)              | 2.410(4)                            | 3.044(5)             | 134.9(1)    |
| O35–H351•••O38 <sup>ii</sup>            | 0.810(1)              | 1.980(4)                            | 2.746(5)             | 157.0(1)    |
| O34–H342•••O10 <sup>iii</sup>           | 0.827(1)              | 2.128(4)                            | 2.901(5)             | 155.2(1)    |
| O33–H331•••O35 <sup>iv</sup>            | 0.818(1)              | 2.117(4)                            | 2.881(5)             | 155.1(1)    |
| O34–H341•••O25 <sup>iv</sup>            | 0.823(1)              | 2.196(4)                            | 2.968(5)             | 156.3(1)    |
| O36–H362•••O12 <sup>v</sup>             | 0.812(1)              | 2.098(4)                            | 2.908(5)             | 173.7(1)    |
| O36–H362•••O13 <sup>v</sup>             | 0.812(1)              | 2.586(4)                            | 3 168(5)             | 129 7(1)    |
| O37_H371•••O29 <sup>v</sup>             | 0.811(1)              | 2.144(4)                            | 2.896(5)             | 1540(1)     |
| O36_H361•••O35 <sup>vi</sup>            | 0.872(1)              | 2.111(-7)<br>2.017(4)               | 2.000(0)<br>2.821(5) | 165 3(1)    |
| 0.50 11501055                           | 0.044(1)              | 2.01/(T)                            | 2.021(3)             | 100.0(1)    |
| 037_H371•••016 <sup>vii</sup>           | 0.811(1)              | 2575(A)                             | 3 136(5)             | 127 5(1)    |

Table 5 Geometry of medium to strong hydrogen bonds in the crystal structure of salts of the  $[(CH_3)_2N(CH_2Cl)NH_2]^+$  cation.

 $\underbrace{\begin{array}{c} 0.51-11512-14000}{\text{Symmetry codes for 3: (i)}} \underbrace{\begin{array}{c} 0.51-11512-14000}{\text{Symmetry codes for 3: (i)} \underbrace{\begin{array}{c} 0.51-11512-14000}{\text{Symmetry codes for 3: (i)}} \underbrace{\begin{array}{c} 0.51-14000}{\text{Symmetry codes for 3: (i)} \underbrace{\begin{array}{c} 0.51-11000}{\text{Symmetry codes for 3: (i)} \underbrace{\begin{array}{c} 0.51-14000}{\text{Symmetry codes fo$ 

| O1–Ba                | 2.724(3)  | O33–Ba                    | 2.735(3)  |
|----------------------|-----------|---------------------------|-----------|
| O9–Ba                | 2.935(3)  | O34–Ba                    | 2.821(3)  |
| O17–Ba               | 2.728(3)  | O35–Ba                    | 2.789(3)  |
| O28 <sup>i</sup> –Ba | 3.002(3)  | O36–Ba                    | 2.823(3)  |
| O32–Ba               | 3.070(3)  | O37–Ba                    | 2.799(3)  |
| O1-Ba-O17            | 82.60(8)  | O35–Ba–O9                 | 155.04(8) |
| O1-Ba-O33            | 148.96(8) | O34–Ba–O9                 | 129.92(8) |
| O17–Ba–O33           | 74.87(9)  | O1–Ba–O28 <sup>ii</sup>   | 135.00(8) |
| O1-Ba-O35            | 127.63(8) | O17–Ba–O28 <sup>ii</sup>  | 141.85(8) |
| O17–Ba–O35           | 86.11(8)  | O33–Ba–O28 <sup>ii</sup>  | 71.91(9)  |
| O33–Ba–O35           | 72.37(8)  | O35–Ba–O28 <sup>ii</sup>  | 66.44(8)  |
| O1–Ba–O37            | 77.01(8)  | O37–Ba–O28 <sup>ii</sup>  | 69.96(8)  |
| O17–Ba–O37           | 125.60(8) | O1–Ba–O32                 | 63.41(8)  |
| O33–Ba–O37           | 133.70(8) | O17–Ba–O32                | 54.62(8)  |
| O35–Ba–O37           | 68.96(8)  | O33–Ba–O32                | 116.29(9) |
| O1–Ba–O34            | 108.88(8) | O35–Ba–O32                | 68.45(8)  |
| O17–Ba–O34           | 111.44(8) | O37–Ba–O32                | 71.17(8)  |
| O33–Ba–O34           | 61.99(9)  | O34–Ba–O33                | 61.13(8)  |
| O35–Ba–O34           | 122.80(8) | O34–Ba–O9                 | 64.68(8)  |
| O37–Ba–O34           | 122.81(9) | O36-Ba-O9                 | 69.81(8)  |
| O1–Ba–O36            | 63.70(8)  | O34–Ba–O28 <sup>ii</sup>  | 67.92(8)  |
| O17–Ba–O36           | 137.08(8) | O36–Ba–O28 <sup>ii</sup>  | 78.06(8)  |
| O33–Ba–O36           | 122.12(9) | O9–Ba–O28 <sup>ii</sup>   | 131.22(8) |
| O35–Ba–O36           | 135.15(8) | O34–Ba–O32                | 163.52(8) |
| O37–Ba–O36           | 73.81(8)  | O36–Ba–O32                | 121.23(8) |
| O1–Ba–O9             | 56.52(8)  | O9–Ba–O32                 | 100.02(7) |
| O17-Ba-O9            | 69.57(8)  | O28 <sup>11</sup> –Ba–O32 | 128.20(7) |
| O33–Ba–O9            | 95.12(8)  |                           |           |

**Table 6** Selected coordination geometry around the metal centre in  $Ba[(NO_2)_3Ph-O]_2*6H_2O$  (distances in Å and angles in °).

Symmetry codes: (i) x, 1+y, z; (ii) x, -1+y, z.

**Table 7** Thermodynamic and explosive properties of formulations of energetic salts of the  $[(CH_3)_2N(CH_2Cl)NH_2]^+$  cation with ammonium nitrate (AN). All formulations contain 1% of TFNA = trifluoro-trinitro-azahexane.

|                                                          | $AN + 2^{a}$ | <b>AN + 3</b> <sup><i>a</i></sup> | <b>AN + 4</b> <sup><i>a</i></sup> | <b>AN</b> + 5 <sup><i>a</i></sup> | <b>AN</b> + 7 <sup><i>a</i></sup> | $AN + 8^a$ | <b>AN</b> + 9 <sup><i>a</i></sup> |
|----------------------------------------------------------|--------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------|-----------------------------------|
| ho (g cm <sup>-3</sup> ) <sup>b</sup>                    | 1.670        | 1.714                             | 1.676                             | 1.668                             | 1.692                             | 1.706      | 1.692                             |
| $M(g \text{ mol}^{-1})$                                  | 101.23       | 119.41                            | 92.74                             | 94.43                             | 127.49                            | 133.53     | 99.05                             |
| $arOmega\left(\% ight){}^{c}$                            | +0.38        | +0.15                             | -0.35                             | -0.50                             | +0.61                             | -0.37      | -0.46                             |
| $\Delta U^{ m o}{}_{ m f}$ / kJ kg <sup>-1</sup> $^{d}$  | -3258        | -2296                             | -3185                             | -3345                             | -2956                             | -3392      | -3394                             |
| $\Delta H^{\circ}{}_{ m f}$ / kJ kg <sup>-1</sup> $^{e}$ | -3393        | -2425                             | -3322                             | -3480                             | -3091                             | -3521      | -3531                             |
| $T_{\rm ex}$ / K <sup>f</sup>                            | 3142         | 3609                              | 2980                              | 3048                              | 3124                              | 3143       | 2926                              |
| $V_0$ / L kg <sup>-1 g</sup>                             | 942          | 910                               | 957                               | 944                               | 948                               | 910        | 955                               |
| $P_{\rm det}$ / kbar $^{h}$                              | 259          | 279                               | 264                               | 234                               | 266                               | 256        | 266                               |
| $D / \mathrm{m \ s}^{-1 \ i}$                            | 8085         | 8347                              | 8137                              | 7942                              | 8194                              | 8019       | 8182                              |
| $I_{sp}(\mathbf{s})^{j}$                                 | 230          | 245                               | 229                               | 221                               | 238                               | 227        | 229                               |

<sup>*a*</sup> 78% AN + 21% **2**; 70% AN + 29% **3**; 84% AN + 15% **4**; 86% AN + 13% **5**; 84% AN + 15% **7**; 79% AN + 20% **8**; 84% AN + 15% **9**; <sup>*b*</sup> Density (averaged with EXPLO5); <sup>*c*</sup> Oxygen balance according to EXPLO5; <sup>*d*</sup> Calculated energy of formation; <sup>*e*</sup> Calculated enthalpy of formation; <sup>*f*</sup> Temperature of the explosion gases; <sup>*b*</sup> Detonation pressure; <sup>*i*</sup> Detonation velocity; <sup>*j*</sup> Specific impulse (isobaric combustion for the mixture at a chamber pressure = 60.0 bar).

|                                                           | <b>ADN + 2</b> <sup><i>a</i></sup> | $ADN + 3^{a}$ | $ADN + 4^{a}$ | $ADN + 5^{a}$ | $ADN + 7^{a}$ | $\mathbf{ADN} + 8^{a}$ | $ADN + 9^{a}$ |
|-----------------------------------------------------------|------------------------------------|---------------|---------------|---------------|---------------|------------------------|---------------|
| ho (g cm <sup>-3</sup> ) <sup>b</sup>                     | 1.720                              | 1.767         | 1.737         | 1.727         | 1.752         | 1.767                  | 1.7055        |
| $M(\mathrm{g} \mathrm{mol}^{-1})$                         | 137.94                             | 155.32        | 130.54        | 133.83        | 174.83        | 176.85                 | 138.11        |
| $arOmega\left(\% ight){}^{c}$                             | +0.12                              | -0.09         | +0.45         | -0.24         | +0.28         | +0.06                  | +0.29         |
| $\Delta U^{ m o}_{ m f}$ / kJ kg <sup>-1</sup> $^{d}$     | -549                               | +275          | -178          | -331          | +100          | -687                   | -489          |
| $\Delta H^{\circ}{}_{\rm f}$ / kJ kg <sup>-1</sup> $^{e}$ | -669                               | +160          | -299          | -449          | -19           | -800                   | -610          |
| $T_{\rm ex}$ / ${f K}^f$                                  | 4055                               | 4533          | 3900          | 4033          | 4133          | 4054                   | 3881          |
| $V_0$ / L kg <sup>-1 g</sup>                              | 877                                | 845           | 890           | 872           | 878           | 837                    | 888           |
| $P_{\rm det}$ / kbar <sup>h</sup>                         | 329                                | 338           | 330           | 305           | 334           | 332                    | 337           |
| $D / { m m s}^{-1 i}$                                     | 8649                               | 8809          | 8780          | 8584          | 8733          | 8634                   | 8840          |
| $I_{sp}(\mathbf{s})^{j}$                                  | 253                                | 259           | 250           | 231           | 255           | 248                    | 249           |

**Table 8** Thermodynamic and explosive properties of formulations of of energetic salts of the  $[(CH_3)_2N(CH_2Cl)NH_2]^+$  cation with ammonium dinitramide (ADN). All formulations contain 1% of TFNA = trifluoro-trinitro-azahexane.

<sup>*a*</sup> 73% ADN + 26% **2**; 64% ADN + 35% **3**; 81% ADN + 18% **4**; 83% ADN + 16% **5**; 80% ADN + 19% **7**; 75% AN + 24% **8**; 81% ADN + 18% **9**; <sup>*b*</sup> Density (averaged with EXPLO5); <sup>*c*</sup> Oxygen balance according to EXPLO5; <sup>*d*</sup> Calculated energy of formation; <sup>*e*</sup> Calculated enthalpy of formation; <sup>*f*</sup> Temperature of the explosion gases; <sup>*b*</sup> Detonation pressure; <sup>*i*</sup> Detonation velocity; <sup>*j*</sup> Specific impulse (isobaric combustion for the mixture at a chamber pressure = 60.0 bar).

#### References

1 J. Thiele, Just. Lieb. Ann. Chem., 1892, 270, 54–63; J. Thiele and J. T. Marais, Just. Lieb. Ann. Chem., 1893, 273, 144–160; J. Thiele, Ber. Dtsch. Chem. Ges., 1893, 26, 2645–2646; J. Thiele, Just. Lieb. Ann. Chem., 1898, 303, 57–75.

2 A. Hammerl, G. Holl, T. M. Klapötke, P. Mayer, H. Nöth, H. Piotrowski and M. Warchhold, *Eur. J. Inorg. Chem.*, 2002, 834–845.

- 3 C. Miró Sabaté, E. Jeanneau and J. Stierstorfer, Z. Anorg. Allg. Chem. 2011, 637(11), 1490–1501.
- 4 Y. Inoue, M. Ouchi and T Hakushi, Bull. Chem. Soc. Japan, 1985, 58, 525-530.
- 5 CrysAlis Pro, Oxford Diffraction Ltd., Version 4, 2004.
- 6 SIR-92, A program for crystal structure solution A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, *J. Appl. Crystallogr.*, 1993, **26**, 343.
- 7 G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution, Universität Göttingen, 1997.

8 G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.

9 L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837.

10 A. L. Spek, PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 1999.

11 SCALE3 ABSPACK-An Oxford Diffraction program (1.0.4,gui:1.0.3), © 2005 Oxford Diffraction Ltd.

12 A. Xia and P. R. Sharp, Inorg. Chem., 2001, 40(16), 4016-4021.

- 13 A copy of the cif files of compounds 3, 6, 7, 8 and Ba[(NO<sub>2</sub>)<sub>3</sub>Ph-O]<sub>2</sub>\*6H<sub>2</sub>O can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: int. code\_(1223)336-033. E-mail for inquiry: fileserv@ccdc.cam.ac.uk. E-mail for deposition: deposit-@ccdc.cam.ac.uk).
- 14 W. H. Beamer, J. Am. Chem. Soc., 1948, 70, 2979.
- 15 International Tables for X-Ray Crystallography, vol. III, Kynoch Press, Birmingham, 1962, p. 270.
- 16 T. M. Klapötke, P. Mayer and J. Stierstorfer, *Phosphorus, Sulfur Silicon Relat. Elem.*, 2009. 184(9), 2393–2407
- 17 K. Karaghiosoff, T. M. Klapötke and C. Miró Sabaté, Eur. J. Inorg. Chem., 2009, 238–250.
- 18 A. Hammerl, G. Holl, T. M. Klapötke, P. Mayer, H. Nöth, H. Piotrowski and M. Warchhold, *Eur. J. Inorg. Chem.*, 2002, 834–845.
- 19 T. M. Klapötke and C. Miró Sabaté, *Eur. J. Inorg. Chem.*, 2008, **34**, 5350–5366; T. M. Klapötke, C. Miró Sabaté, *Z. Anorg. Allg. Chem.*, 2008, **634**, 1017–1024.
- 20 Gaussian 03W Program, Gaussian Inc., Wallingford, CT, 2004.
- 21 A.P. Scott and L. Radom, J. Phys. Chem., 1996, 100, 16502.