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1. General methods
Commercially available reagents were used without further purification. L-Nucleotides
and their 5’-O-dimethoxytrityl-3’-(2-cyanoethyl)-N,N-diisopropylphosphoramidite
derivatives were synthesized according to a previously reported procedure.1 HPLC
analyses were performed on a Shimadzu LC-10A system. A µBondasphere C18 5µm
100Å column (3.9×150 mm, Waters) was used with a linear gradient of acetonitrile in
50 mM triethylammonium acetate (TEAA, pH 7.0). Matrix-assisted laser
desorption/ionization time-of-flight (MALDI TOF) mass spectra were acquired on a
Voyager-DE™ STR (Applied Biosystems) with 3-hydroxypicolinic acid as the matrix.

2. Oligonucleotide synthesis and characterization with MALDI-TOF mass spectrometry
Oligodeoxyribonucleotides were synthesized on an Applied Biosystems model 392
automated DNA/RNA synthesizer. Reagents for the synthesis were purchased from
Applied Biosystems Japan.
d(AAATCTGCG); m/z calcd for C88H113N35O51P8 ([M+H]+), 2723.82, found: 2723.43;
d(CGCAGATTT); m/z calcd for C88H113N32O53P8 ([M+H]+), 2714.80, found: 2714.51;
d(AALATCTGCG); m/z calcd for C88H113N35O51P8 ([M+H]+), 2723.82, found: 2724.36;
d(AAATCTLGCG); m/z calcd for C88H113N35O51P8 ([M+H]+), 2723.82, found: 2723.53;
d(AAATLCTGCG); m/z calcd for C88H113N35O51P8 ([M+H]+), 2723.82, found: 2723.12;
d(AAALTCTGCG); m/z calcd for C88H113N35O51P8 ([M+H]+), 2723.82, found: 2722.57;
d(CGCAGAATT); m/z calcd for C88H112N35O51P8 ([M+H]+), 2723.82, found: 2723.77;
d(CGCAGAGTT); m/z calcd for C88H112N35O52P8 ([M+H]+), 2739.82, found: 2739.98;
d(CGCAGACTT); m/z calcd for C87H112N33O52P8 ([M+H]+), 2699.79, found: 2699.59;
d(CGAAGATTT); m/z calcd for C89H113N34O52P8 ([M+H]+), 2738.83, found: 2738.04;
d(CGGAGATTT); m/z calcd for C89H113N34O53P8 ([M+H]+), 2754.83, found: 2754.55;
d(CGTAGATTT); m/z calcd for C89H114N31O54P8 ([M+H]+), 2729.82, found: 2729.14;
d(CGCAAATTT); m/z calcd for C88H113N32O52P8 ([M+H]+), 2698.81, found: 2697.01;
d(CGCACATTT); m/z calcd for C87H113N30O53P8 ([M+H]+), 2674.78, found: 2673.62;
d(CGCATATTT); m/z calcd for C88H114N29O54P8 ([M+H]+), 2689.79, found: 2688.94;
d(CGCAGGTTT); m/z calcd for C88H113N32O54P8 ([M+H]+), 2730.80, found: 2729.11;
d(CGCAGCTTT); m/z calcd for C87H113N30O54P8 ([M+H]+), 2690.78, found: 2690.25;
d(CGCAGTTTT); m/z calcd for C87H114N29O55P8 ([M+H]+), 2705.79, found: 2704.63

3. Melting experiments
The concentrations of oligonucleotide solutions were calculated by using the equation
and coefficients described by Bore.2 The coefficients of the heterochiral oligomer were
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assumed to be the same as those of the corresponding homochiral oligomer. Duplex 
solutions (6 mM) in 10 mM MgCl2, 100 mM NaCl, and 70 mM MOPS (pH 7.1) were 
heated at 90 ºC and cooled gradually to room temperature. Melting curves were 
measured at least twice at 270 nm on a JASCO V-560 spectrophotometer equipped with 
a programmable temperature control unit. The temperature was raised at a rate of 
0.5ºC/min and Tm values were obtained from the first-derivative plots of the melting 
curves. 

4. Table S1. Melting temperature of mismatched homo- and heterochiral duplexes.a 

aSamples contained 6 µM duplex in 10 mM MgCl2, 100 mM NaCl, and 70 mM MOPS 
(pH 7.1). Melting points are the average of at least two measurements ± standard 
deviation. Melting point differences from the fully matched (F. M.) duplex are shown 
in parenthesis. 

complementary strand homo- and heterochiral strand 
d(AADATCTGCG) d(AALATCTGCG) 

d(CGCAGAXTT) X = A 27.6 ± 0.0 (-14.5) 26.0 ± 0.4 (-7.6) 

X = G 31.8 ± 0.4 (-10.3) 29.2 ± 0.2 (-4.4) 
X = C 27.3 ± 0.3 (-14.8) 27.7 ± 0.5 (-5.9) 
X = T 42.1 ± 0.3 F.M. 33.6 ± 0.2 F.M.

d(AAATCTDGCG)    d(AAATCTLGCG) 
d(CGXAGATTT) X = A 22.1 ± 0.1 (-20.0) 19.3 ± 0.3 (-13.3) 

X = G 22.5 ± 0.1 (-19.6) 31.6 ± 0.4 (-1.0) 
X = C 42.1 ± 0.3 F.M. 32.6 ± 0.4 F.M.
X = T 25.0 ± 0.2 (-17.1) 22.4 ± 0.4 (-10.2) 

  d(AAATDCTGCG)     d(AAATLCTGCG) 
d(CGCAXATTT) X = A 16.4 ± 0.0 (-25.7) 13.8 ± 0.2 -24.4

X = G 42.1 ± 0.3 F.M. 38.2 ± 0.2 F.M.
X = C 13.6 ± 0.2 (-28.5) 9.9 ± 0.1 (-28.3)
X = T 18.2 ± 0.2 (-23.9) 13.7 ± 0.1 (-24.5)

d(AAADTCTGCG)    d(AAALTCTGCG) 
d(CGCAGXTTT) X = A 42.1 ± 0.3 F.M. 33.9 ± 0.1 F.M.

X = G 31.3 ± 0.1 (-10.8) 25.7 ± 0.5 (-8.2) 
X = C 22.2 ± 0.2 (-19.9) 20.7 ± 0.5 (-13.2) 
X = T 26.4 ± 0.2 (-15.7) 26.9 ± 0.1 (-7.0) 



S4 

5. References.
1. H.Urata, E. Ogara, K. Shinohara, Y. Ueda, and M. Akagi, Nucleic Acids Res., 1992,

20, 3325
2. P.N Bore, Optical properties of nucleic acids, in: G.D. Fasman (Ed.), Handbook of

Biochemistry and Molecular Bioligy, third ed, Nucleic acid, vol. 1, CRC Press,
Boca Raton, FL, 1975, p589




