Supporting Information for:

Thienyl-substituted BODIPYs with strong visible light absorption and long-lived triplet excited states as organic triplet sensitizers for triplet-triplet annihilation upconversion

Yinghui Chen,^{*a,b*} Jianzhang Zhao,^{*b**} Lijuan Xie,^{*a*} Huimin Guo^{*b*} and and Qiuting Li^{*b*}

^a Institute of Molecular Medicine, Huaqiao University, 269 Chenghua North Road, Quanzhou 362021, P. R. China. ^b State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling-Gong Road, Dalian 116024, P. R. China.

> *E-mail: zhaojzh@dlut.edu.cn (J.Z.) Web: http://finechem.dlut.edu.cn/photochem

Index

1.0	Synthesis and molecular structure characterization data	.S2
2.0	NMR and HR-MS spectra	. \$3
3.0	Transient absorption details	512
4.0	Calculation details	315
5.0	Absorption BI-2 and acceptorsS	17
The	Z-matrix coordinates of the sensitizers	
BI-1		518
BI-2		520

1.0 Synthesis and molecular structure characterization data.

Scheme S1: (a) 2,4-dimethylpyrrole, under Ar, overnight; TEA, $BF_3 \cdot OEt_2$, overnight; yield: 55.0 %; (b) *N*-Iodosuccinimide (NIS), CH_2Cl_2 ; yield: 45.0 %; (c) thiophene-2-boronic acid, $K_3PO_4 \cdot 3H_2O$, $Pd(COO)_2$, toluene, ethanol, under Ar, 80 °C, 8 h; yield: 63.4 %; (d) CHCl₃, glacial acetic acid, NIS, overnight; yield: 70.0 %; (e) NIS, CH_2Cl_2 ; yield: 77.0 %; (f) thiophene-2-boronic acid, $K_3PO_4 \cdot 3H_2O$, $Pd(COO)_2$, toluene, ethanol, under Ar, 80 °C, 8 h; yield: 54.4 %; (g) CHCl₃, glacial acetic acid, NIS, overnight; yield: Ar, 80 °C, 8 h; yield: 54.4 %; (g) CHCl₃, glacial acetic acid, NIS, overnight; yield: Ar, 80 °C, 8 h; yield: 54.4 %; (g) CHCl₃, glacial acetic acid, NIS, overnight; yield: 50.0 %.

2.0 NMR and HR-MS spectra.

Fig. S1 ¹H NMR of compound **1** (400 MHz. CDCl₃).

Fig. S2 ¹H NMR of compound **2** (400 MHz. $CDCl_3$).

Fig. S3 TOF LD⁺ of 2.

Fig. S4 ¹H NMR of compound **3** (400 MHz. CDCl₃).

Fig. S5 13 C NMR of compound **3** (400 MHz. CDCl₃).

Fig. S6 TOF MS EI^+ of **3**.

Fig. S7 ¹H NMR of compound BI-1 (400 MHz. CDCl₃). (δ 1.53 is due to H₂O, peaks at 1.25 and 0.88 ppm are due to *n*-hexane).

Fig. S8¹³C NMR of compound BI-1 (100 MHz. CDCl₃).

Fig. S9 TOF MS EI^+ of BI-1.

ppm

Fig. S10 ¹H NMR of **B-2** (400 MHz, CDCl₃).

Fig. S11 TOF LD⁻ of **B-2.**

Fig. S12 ¹H NMR of **4** (400 MHz, CDCl₃).

Fig. S13 ¹³CNMR of compound 4 (CDCl₃).

Fig. S14 TOF MS EI^+ of 4.

ppm

Fig. S15 ¹H NMR of compound BI-2 (400 MHz. CDCl₃).

ppm

Fig. S16¹³C NMR of compound BI-2 (100 MHz. CDCl₃).

Fig. S17 TOF MS EI⁺ of BI-2.

3.0 Transient absorption details

Fig. S18 (a) Transient absorption difference spectra of **BI-1** after pulsed laser excitation ($\lambda_{ex} = 532 \text{ nm}$). (b) Decay trace of the transient at 532 nm. 1.0×10^{-5} M. In aerated toluene . 20 °C.

Fig. S19 (a) Transient absorption difference spectra of **BI-1** after pulsed laser excitation (λ ex = 532 nm). (b) Decay trace of the transient at 532 nm. 1.0 × 10⁻⁵ M. in deaerated toluene. 20 °C.

Fig. S20 Transient absorption difference spectra of **BI-2** (b) Decay trace of the transient at 530 nm after pulsed laser excitation ($\lambda_{ex} = 532 \text{ nm}$). $1.0 \times 10^{-5} \text{ M}$. In aerated toluene. 20 °C.

Fig. S21 Transient absorption difference spectra of **BI-2**. (b) Decay trace of the transient at 527 nm after pulsed laser excitation ($\lambda_{ex} = 532 \text{ nm}$). $1.0 \times 10^{-5} \text{ M}$. In deaerated toluene. 20 °C.

Fig. S22 Transient absorption difference spectra of **B-2**. (b) Decay trace of the transient at 531 nm after pulsed laser excitation ($\lambda_{ex} = 532 \text{ nm}$). $1.0 \times 10^{-5} \text{ M}$. In toluene. 20 °C.

Fig. S23 Transient absorption difference spectra of **B-2**. (b) Decay trace of the transient at 531 nm after pulsed laser excitation ($\lambda_{ex} = 532 \text{ nm}$). $1.0 \times 10^{-5} \text{ M}$. In deaerated toluene. 20 °C.

4.0 Calculation details

Table 1. Selected parameters for the vertical excitation (UV-vis absorptions) and the emission of **1**. Electronic excitation energies (eV) and oscillator strengths (*f*), configurations of the low-lying excited states of the compounds. The calculation of the S_0 - S_1 energy gaps are based on the optimized ground state geometries (UV-vis absorption) and the optimized S_1 excited state geometries (fluorescence emission). Methanol was used as solvent in all the calculations. Calculated by DFT/TDDFT//B3LYP/6-31G(d) with Gaussian 09W.

Compounds		Electronic	TDI	DFT//B3LYP/6-31G(d)		
Compounds		Transitions ^a	Excitation Energy	f^{b}	Composition ^c	CI ^d
1	Absorption ^e	$S_0 \rightarrow S_1$	2.92 eV(425 nm)	0.5874	H-1→L	0.1272
					$H \rightarrow L$	0.6990
	Emission ^f	$S_1 \rightarrow S_0$	2.63 eV (472 nm)	0.7741	$H \rightarrow L$	0.7066

^{*a*} Only selected excited states were considered. The numbers in parentheses are the excitation energy in wavelength. ^{*b*} oscillator strength. ^{*c*} H stands for HOMO and L stands for LUMO. Only the main configurations are presented. ^{*d*} Coefficient of the wavefunction for each excitations. The CI coefficients are in absolute values. ^{*c*} The calculations on UV-vis absorption were based on the optimized ground state geometry. ^{*f*} The calculations on fluorescence are based on the optimized S₁ state geometry.

Fig. S24 The frontier molecular orbitals (MOs) involved in the vertical excitation (i.e. UV-vis absorption, the left column) and emission of **1** (the right column). Methanol was used as the solvent.

5.0 Absorption and emission spectra of the acceptor.

Fig. S25 UV-vis absorption and emission spectra of perylene. $\lambda_{ex} = 390$ nm. $c = 1.0 \times 10^{-5}$ M, in toluene. 20 °C.

Fig. S26 Emission spectra and excitation spectra of compounds **BI-2**. $\lambda_{ex} = 520$ nm. $c = 1.0 \times 10^{-5}$ mol/L. In toluene. 25 °C.

The coordinates of the organic triplet sensitizers

The coordinates of **BI-1** (DFT//B3LYP/6-31G(d)/LanL2DZ) Symbolic Z-matrix:

Charge = 0 Multiplicity = 1

U 1	•		
С	1.05041200	-1.65139800	0.31953000
С	1.13219300	0.62618500	0.41163800
С	1.92343700	-0.53306300	0.43838800
С	-0.22237600	0.18537700	0.26580600
С	-1.43392800	0.89420100	0.18032300
С	-2.66416300	0.21704700	0.07352200
С	-4.00642000	0.70363000	-0.07090400
С	-4.79866800	-0.44199000	-0.13229500
С	-3.98142600	-1.59127100	-0.03972300
Ν	-0.21674300	-1.21472300	0.22200800
Ν	-2.70368800	-1.18149500	0.08121500
В	-1.47031900	-2.13120600	0.13770000
F	-1.42706100	-2.91179200	-1.01801500
F	-1.53555100	-2.94499600	1.26924300
С	1.65237900	2.02517500	0.56380500
Н	1.64456900	2.57265200	-0.38577800
Н	1.05217500	2.60603300	1.26876800
Н	2.68328000	2.00356400	0.92647500
С	-4.36041300	-3.03426800	-0.08298600
Н	-5.43759600	-3.15646600	0.04230300
Н	-4.06661000	-3.47708800	-1.04189200
Н	-3.83702500	-3.58712800	0.70150800
С	-4.49102600	2.11924600	-0.15295200
Н	-3.88832300	2.71723900	-0.84100400
Н	-5.52827900	2.14051700	-0.49633000
Н	-4.45265600	2.61727300	0.82258400
С	1.40219500	-3.10269700	0.29482400
Н	0.86635300	-3.60923400	-0.51250100
Н	2.47766000	-3.23400000	0.16171800
Н	1.10325300	-3.58803900	1.23156800
С	-1.41448700	2.38820300	0.19906100
С	-1.69065500	3.08443000	1.38420900
С	-1.11917900	3.10697500	-0.96779900
С	-1.66572500	4.48024300	1.40214600
Н	-1.91907000	2.53072700	2.29064900
С	-1.10574300	4.50302500	-0.94937300
Н	-0.90535000	2.57082000	-1.88819200
С	-1.37608400	5.19218200	0.23544100
Н	-1.87519600	5.01014400	2.32712700
Н	-0.88144000	5.05079300	-1.86036000
С	3.37981200	-0.62904600	0.55961500
С	4.12291200	-1.34775100	1.46668200
S	4.44864400	0.16805200	-0.59039400
С	5.53402000	-1.26197600	1.26839200
Н	3.67039700	-1.91560800	2.27265500
С	5.85689700	-0.47508100	0.19767200

Н	6.26405400	-1.75579200	1.89853000
Н	-1.36119400	6.27829800	0.24948700
I	7,79933400	-0.01187000	-0.49070500
I	-6 90637100	-0.49883100	-0 33916800
1	-0.70037100	-0.47003100	-0.55710000
121510152710			
1 3 1.5 10 1.5 2/ 1.0			
2 3 1.5 4 1.5 15 1.0			
3 41 1.0			
4 5 1.5 10 1.0			
561.5311.0			
671.5111.0			
7 8 1.5 23 1.0			
891.5501.0			
911151910			
101210			
10 12 1.0			
11 12 1.0			
12 13 1.0 14 1.0			
13			
14			
15 16 1.0 17 1.0 18 1.0	1		
16			
17			
18			
19 20 1.0 21 1.0 22 1.0)		
20			
20			
21			
22			
23 24 1.0 25 1.0 26 1.0			
24			
25			
26			
27 28 1.0 29 1.0 30 1.0)		
28			
29			
30			
31 32 1 5 33 1 5			
32 34 1 5 35 1 0			
22 26 1 5 27 1 0			
33 30 1.3 37 1.0			
34 38 1.5 39 1.0			
35			
36 38 1.5 40 1.0			
37			
38 48 1.0			
39			
40			
41 42 2.0 43 1.0			
42,44154510			
43 46 1 0			
44 46 2 0 47 1 0			
44 40 2.0 4/ 1.0			
45			
46 49 1.0			

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2012

47 48 49

50

SCF Done: E(RB+HF-LYP) = -1643.05342192 a.u. Number of Imaginary frequencies: 0

The coordinates of **BI-2** (DFT//B3LYP/6-31G(d)/LanL2DZ) Symbolic Z-matrix: Charge = 0 Multiplicity = 1

С	2.39806900	-1.54732300	0.58365400
С	2.62639400	0.71835800	0.45101100
С	3.34484900	-0.48632700	0.52341900
С	1.24063300	0.36106900	0.45786000
С	0.07064500	1.14144600	0.40500800
С	-1.20209800	0.54435600	0.46614100
С	-2.51937500	1.09717800	0.37955200
С	-3.40917000	0.01585900	0.49411400
С	-2.63105400	-1.16689600	0.63551600
Ν	1.15625500	-1.03415000	0.54842200
Ν	-1.32678400	-0.84274500	0.61511500
В	-0.15391400	-1.86313100	0.67543300
F	-0.26500300	-2.76665400	-0.38227000
F	-0.16080300	-2.54375600	1.89461700
С	3.24344700	2.08600700	0.43311100
Η	3.19083900	2.55071900	-0.55819100
Η	2.74273700	2.76520500	1.12797000
Η	4.29781800	2.02363300	0.71447200
С	-3.10114400	-2.57635600	0.79690900
Н	-4.15574400	-2.60198200	1.07807200
Н	-2.97717700	-3.13682900	-0.13748300
Η	-2.50855300	-3.08749500	1.55989000
С	-2.92969100	2.52267400	0.15896600
Н	-2.35207700	2.99271400	-0.64150500
Н	-3.98959600	2.56538200	-0.10533700
Н	-2.78559700	3.13688400	1.05542400
С	2.65605900	-3.01592200	0.67013700
Н	2.01390800	-3.55575800	-0.03085200
Н	3.70341600	-3.23444900	0.45317400
Н	2.42122000	-3.39101000	1.67353800
С	0.18057900	2.62568300	0.27702100
С	0.02997000	3.44707100	1.40324900
С	0.43492300	3.21140500	-0.97116400
С	0.13694700	4.83396800	1.28239900

Н	-0.16501600	2.99695500	2.37267600
С	0.53091900	4.59911500	-1.09096600
Н	0.55132800	2.57861700	-1.84657800
С	0.38445200	5.41272700	0.03524500
Н	0.02486300	5.46097000	2.16253800
Н	0.72209400	5.04323400	-2.06384400
С	-4.87155400	0.08832400	0.47753900
С	-5.70419300	0.85444200	1.25946000
S	-5.82202900	-0.82370200	-0.69112400
С	-7.09112000	0.71618600	0.95109000
Н	-5.33343200	1.49226100	2.05470800
С	-7.30528900	-0.15931100	-0.07723100
Н	-7.88223200	1.23681700	1.47740300
С	4.79742800	-0.67144000	0.53726500
С	5.56856000	-1.36169900	1.44311800
S	5.81381300	-0.04579600	-0.75760000
С	6.96102700	-1.38786200	1.12946100
Н	5.15127700	-1.82851700	2.32899000
С	7.24097300	-0.71532100	-0.02773100
Н	7.70952000	-1.87535100	1.74267600
Н	0.46312600	6.49215300	-0.05845500
I	9.14486600	-0.43628600	-0.90024400
Ι	-9.17133500	-0.72577100	-0.88876800
1 3 1.5 10 1.5 27 1.0			
2 3 1.5 4 1.5 15 1.0			
3 48 1.0			
4 5 1.5 10 1.0			
561.5311.0			
671.5111.0			
781.5231.0			
891.5411.0			
9 11 1.5 19 1.0			
10 12 1.0			
11 12 1.0			
12 13 1.0 14 1.0			
13			
14			
15 16 1.0 1/ 1.0 18 1.0			
16			
1/			
18			
19 20 1.0 21 1.0 22 1.0			
20			
21			
<i>22</i> 22 24 1 0 25 1 0 26 1 0			
25 24 1.0 25 1.0 20 1.0 24			
2т 25			
25			
27 28 1 0 29 1 0 30 1 0			
2/ 20 1.0 27 1.0 30 1.0			

SCF Done: E(RB+HF-LYP) = -2194.85790484 a.u. Number of Imaginary frequencies: 0

The coordinates of compound **1** (DFT//B3LYP/6-31G(d)/LanL2DZ) Symbolic Z-matrix: Charge = 0 Multiplicity = 1

С	-1.90287300	-2.53098100	-0.00016500
С	0.37009600	-2.58183900	-0.00018600
С	-0.77480800	-3.37316700	-0.00027300
С	-0.08889300	-1.22269800	-0.00000200
С	0.60321600	-0.00001000	0.00007000
С	-0.08882700	1.22268700	0.00006600
С	0.37020600	2.58182800	-0.00005700
С	-0.77465700	3.37318000	-0.00015100
С	-1.90275800	2.53102500	-0.00001000

Ν	-1.49153800	-1.24428800	-0.00001100
Ν	-1.49148000	1.24432700	0.00006700
В	-2.41645100	0.00001200	0.00019900
F	-3.22686400	0.00009900	-1.14359900
F	-3.22647200	0.00000900	1.14427200
С	1.77142100	-3.11796200	-0.00038600
Н	2.33681400	-2.79020400	-0.87906500
Н	2.33718200	-2.79003500	0.87797700
Н	1.74703600	-4.21180200	-0.00028700
С	-3.34394700	2.92574000	-0.00006400
Н	-3.43964100	4.01391700	0.00077600
Н	-3.85720700	2.52398300	-0.88039600
Н	-3.85767800	2.52253400	0.87931600
С	1.77156900	3.11784100	-0.00027300
Н	2.33654000	2.79089100	-0.87953600
Н	1.74727200	4.21168600	0.00086200
Н	2.33769100	2.78901700	0.87751100
С	-3.34408600	-2.92561100	-0.00012100
Н	-3.85764600	-2.52295400	-0.87985900
Н	-3.43985100	-4.01378200	-0.00028800
Н	-3.85748000	-2.52323900	0.87984800
С	2.09869100	-0.00003600	0.00009800
С	2.80653700	-0.00031200	1.20994700
С	2.80660600	0.00025500	-1.20971100
С	4.20295800	-0.00031400	1.20858900
Н	2.26290700	-0.00051600	2.15065500
С	4.20302400	0.00023300	-1.20827300
Н	2.26302800	0.00048500	-2.15044800
С	4.90369600	-0.00005100	0.00017700
Н	4.74156300	-0.00052500	2.15208300
Н	4.74168500	0.00044800	-2.15173600
Н	5.99002400	-0.00005700	0.00020700
Н	-0.80583300	4.45528100	-0.00020500
Н	-0.80601100	-4.45526700	-0.00051100
1 3 1.5 10 1.5 27 1.0			

3 1.5 10 1.5 27 2 3 1.5 4 1.5 15 1.0 3 43 1.0 4 5 1.5 10 1.0 561.5311.0 671.5111.0 7 8 1.5 23 1.0 891.5421.0 9 11 1.5 19 1.0 10 12 1.0 11 12 1.0 12 13 1.0 14 1.0 13 14 15 16 1.0 17 1.0 18 1.0 16

17
18
19 20 1.0 21 1.0 22 1.0
20
21
22
23 24 1.0 25 1.0 26 1.0
24
25
26
27 28 1.0 29 1.0 30 1.0
28
29
30
31 32 1.5 33 1.5
32 34 1.5 35 1.0
33 36 1.5 37 1.0
34 38 1.5 39 1.0
35
36 38 1.5 40 1.0
37
38 41 1.0
39
40
41
42
43

SCF Done: E(RB+HF-LYP) = -1069.72116028 a.u. Number of Imaginary frequencies: 0