Supporting Information

<u>**Title:**</u> Magnesium complexes supported by pyrrolyl ligands: synthesis, characterization, and catalytic activity toward the polymerization of ϵ -caprolactone

Authors:

Miaoshui Lin, Wei Liu, Zhou Chen, Lijuan Yang, Hao Pei, Jian Wu, Xiaoyu Wan, Tao Lei, Yahong Li

- 1. ¹H and ¹³C NMR spectra for the complexes 1-5.
- 2. Crystallography data for complexes **2-4**.

1. ¹H and ¹³C NMR spectra for the complexes 1-5.

1.1 ¹H and ¹³C NMR spectra for $Mg(L1)_2(1)$

¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 2H, N=CH), 7.93 (d, 2H, J = 4.7 Hz, pyridyl-H), 7.56 (t, 2H, J = 7.5 Hz, pyridyl-H), 7.21 (d, 2H, J = 7.8 Hz, pyridyl-H), 6.99 – 6.91 (m, 2H, pyridyl-H), 6.81 (s, 2H, pyrrole-H), 6.69 (d, J = 3.0 Hz, 2H, pyrrole-H), 6.11 (d, J = 1.8 Hz, 2H, pyrrole-H), 5.01 (s, 4H, NCH₂). ¹³C NMR (101 MHz, CDCl₃) δ 158.81, 158.48, 147.57, 138.34, 137.46, 136.14, 122.67, 122.00, 115.41, 110.27, 5.25.

1.2 ¹H and ¹³C NMR spectra for $Mg(L2)_2(2)$

¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 2H, N=CH), 7.99 (d, 2H, J = 4.4 Hz, pyridyl-H), 7.53 (td, J = 7.6, 1.6 Hz, 2H, pyridyl-H), 7.16 (d, J = 7.7 Hz, 2H, pyridyl-H), 6.95 – 6.84 (m, 4H, pyridyl-H+ pyrrole-H), 6.55 (d, J = 2.8 Hz, 2H, pyrrole-H), 6.15 – 6.04 (m, 2H, pyrrole-H), 4.14 – 4.02 (m, 4H, CH₂-pyridyl), 3.76 (s, 4H, NCH₂). ¹³C NMR (101 MHz, CDCl₃) δ 159.68, 152.77, 149.36, 136.22, 130.00, 123.62, 122.46, 121.29, 114.78, 109.62, 60.25, 39.95.

155

145

135

125

115

1.3 ¹H and ¹³C NMR spectra for $Mg(L3)_2(THF)_2(3)$

¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 2H, N=CH), 7.36 (dd, *J* = 15.5, 8H, Ar-H), 7.19 (t, *J* = 7.0 Hz, 2H, Ar-H), 6.87 (s, 2H, pyrrole-H), 6.78 (s, 2H, pyrrole-H), 6.27 (s, 2H, pyrrole-H), 3.77 (s, 8H, CH₂O of THF), 1.81 (s, 8H, CH₂ of THF).¹³C NMR (75 MHz, CDCl₃) δ 155.70, 149.40, 138.70, 138.40, 129.56, 125.08, 120.94, 120.13, 113.01, 69.22, 25.28.

nd all blad sener sin den bekannen en sener an bekannen frå frå den sener hat den hävde s

105

95 90 f1 (ppm)

85

50 45

40 35 30 25

80 75 70 65 60 55

1.4 ¹H and ¹³C NMR spectra for $Mg(L4)_2(THF)_2(4)$

¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 2H, N=CH), 7.53 – 7.41 (m, 6H, Ar-H), 7.36 (d, *J* = 7.3 Hz, 4H, Ar-H), 7.19 (s, 2H, pyrrole-H), 6.89 (s, 2H, pyrrole-H), 6.52 (d, *J* = 1.5 Hz, 2H, pyrrole-H), 4.72 (s, 4H, NCH₂), 3.70 (s, 8H, CH₂O of THF), 1.85 (s, 8H, CH₂ of THF). ¹³C NMR (100 MHz, CDCl₃) δ 161.16, 139.60, 137.11, 135.08, 128.39, 128.28, 127.03, 116.19, 110.80, 68.39, 60.61, 25.24.

155 145 135 125 115 105 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 f1(ppm)

1.5 ¹H and ¹³C NMR spectra for $Mg(L5)_2(THF)_2(5)$

¹H NMR (300 MHz, CDCl₃) δ 8.03 (s, 2H, N=CH), 7.37 -7.15(s, 8H, Ar-H), 7.15-7.05 (s, 4H, Ar-H+ pyrrole-H), 6.73 (s, 2H, pyrrole-H), 6.44 (s, 2H, pyrrole-H), 3.70 (s, 8H, CH₂O of THF), 3.60 (s, 4H, CH₂-Ar, 2.67 (s, 4H, NCH₂), 1.85 (s, 8H, CH₂ of THF). ¹³C NMR (75 MHz, CDCl₃) δ 160.41, 139.81, 137.27, 134.43, 129.09, 128.50, 126.21, 115.84, 110.84, 68.71, 59.71, 38.40, 25.50.

2. Crystallography data for complexes **2-4**.

	2	3	4
Formula ^{<i>a</i>}	$C_{24}H_{24}MgN_6$	$C_{30}H_{34}MgN_4O_2$	$C_{32}H_{38}MgN_4O_2$
$M / g mol^{-1 a}$	420.80	506.92	534.97
Temperature/K	293(2)	293(2)	293(2)
Wavelength ^b /Å	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	<i>C</i> 2/ <i>c</i>	$P 2_1/c$	Pī
<i>a</i> / Å	28.215(6)	9.986(2)	10.453(2)
b/ Å	16.504(3)	14.269(3)	11.456(2)
<i>c</i> / Å	14.405(3)	19.278(4)	12.516(3)
$lpha/\circ$	90	90	84.02(3)
β/ °	98.59(3)	92.42(3)	76.88(3)
γ/ °	90	90	89.43(3)
$V/~{ m \AA}^3$	6633(2)	2744.5(10)	1451.7(5)
Ζ	12	4	2
$\rho/\text{ g cm}^{-3}$	1.264	1.227	1.224
F (000)	2664	1080	572
Crystal size/ mm ³	0.40 x 0.30 x 0.15	0.23 x 0.21 x 0.19	0.25 x 0.20 x 0.17
heta range/ °	3.05 to 25.02°	3.04 to 27.47°	1.68 to 28.36°
Limiting indices	$-29 \le h \le 33$	$-12 \le h \le \! 12$	$-13 \le h \le 13$
	$-19 \le k \le 18$	$-18 \le k \le 16$	$-15 \le k \le 15$
	$-17 \le l \le 16$	$-25 \le l \le 20$	$-16 \le l \le 15$
Reflections collected / unique	16422 / 5828	14835 / 6228	26473 / 7247
Data / restraints / parameters	5828 / 0 / 421	6228 / 7 / 334	6228 / 7 / 334
GOF	1.181	1.157	1.066
$R_1, wR_2[I > 2\sigma(I)]$	$R_1 = 0.0927$	$R_1 = 0.0980$	$R_1 = 0.0556$

2.1 Crystal data for 2-4

	$wR_2 = 0.1372$	$wR_2 = 0.2011$	$wR_2 = 0.1497$
$D^{c} \cdots D^{d, \ell}$ (all data)	$R_1 = 0.1359$	$R_1 = 0.1504$	$R_1 = 0.0685$
K_1 , WK_2 (all data)	$wR_2 = 0.1537$	$wR_2 = 0.2289$	$wR_2 = 0.1597$
Largest diff. peak and			
hole/ e Å ³	0.284 and -0.254	0.488 and -0.736	0.519 and -0.501

^{*a*} Including solvate molecules. ^{*b*} Mo K α radiation. ^{*c*} $R_1 = \Sigma(|Fo|-|Fc|)/\Sigma(|Fo|)$ for observed reflections. ^{*d*} w = $1/[\sigma^2(Fo^2)+(\alpha P)^2+bP]$ and $P = [\max(Fo^2,0)+2Fc^2]/3$. ^{*e*} $wR_2 = {\Sigma[w(Fo^2-Fc^2)^2]/\Sigma[w(Fo^2)^2]}^{1/2}$ for all data.

2.2 Bond angles and distances for complex 2

Mg(2)-N(7)	2.150(3)
Mg(2)-N(7)#1	2.150(3)
Mg(2)-N(8)	2.188(3)
Mg(2)-N(8)#1	2.188(3)
Mg(2)-N(9)#1	2.301(3)
Mg(2)-N(9)	2.301(3)
N(9)-C(24)	1.342(5)
N(9)-C(11)	1.355(4)
Mg(1)-N(6)	2.156(4)
Mg(1)-N(5)	2.162(3)
Mg(1)-N(3)	2.169(4)
Mg(1)-N(2)	2.176(3)
Mg(1)-N(1)	2.307(4)
Mg(1)-N(4)	2.320(4)

N(7)-C(17)	1.341(5)
N(7)-C(20)	1.379(4)
N(6)-C(23)	1.352(5)
N(6)-C(19)	1.373(5)
N(8)-C(9)	1.281(5)
N(8)-C(13)	1.459(4)
N(2)-C(22)	1.292(5)
N(2)-C(25)	1.460(5)
N(5)-C(29)	1.282(5)
N(5)-C(33)	1.462(5)
N(1)-C(28)	1.349(4)
N(1)-C(31)	1.350(5)
N(4)-C(27)	1.345(5)
N(4)-C(35)	1.354(5)
C(9)-C(20)	1.424(5)
С(9)-Н(9)	0.9300
C(10)-C(28)	1.505(5)
C(10)-C(25)	1.516(6)
C(10)-H(10A)	0.9700
C(10)-H(10B)	0.9700
C(11)-C(15)	1.373(5)
C(11)-C(16)	1.504(5)

C(12)- $C(24)$	1.370(6)
C(12)-C(38)	1.377(5)
C(12)-H(12)	0.9300
C(13)-C(16)#1	1.527(5)
C(13)-H(13A)	0.9700
C(13)-H(13B)	0.9700
N(3)-C(40)	1.346(5)
N(3)-C(30)	1.385(5)
C(15)-C(38)	1.367(6)
C(15)-H(15)	0.9300
C(16)-C(13)#1	1.527(5)
C(16)-H(16A)	0.9700
C(16)-H(16B)	0.9700
	0.9700
C(17)-C(34)	1.394(6)
C(17)-C(34) C(17)-H(17)	1.394(6) 0.9300
C(17)-C(34) C(17)-H(17) C(18)-C(43)	0.37061.394(6)0.93001.370(6)
C(17)-C(34) C(17)-H(17) C(18)-C(43) C(18)-C(28)	1.394(6) 0.9300 1.370(6) 1.381(6)
C(17)-C(34) C(17)-H(17) C(18)-C(43) C(18)-C(28) C(18)-H(18)	 1.394(6) 0.9300 1.370(6) 1.381(6) 0.9300
C(17)-C(34) C(17)-H(17) C(18)-C(43) C(18)-C(28) C(18)-H(18) C(19)-C(44)	 1.394(6) 0.9300 1.370(6) 1.381(6) 0.9300 1.384(6)
C(17)-C(34) C(17)-H(17) C(18)-C(43) C(18)-C(28) C(18)-H(18) C(19)-C(44) C(19)-C(29)	 1.394(6) 0.9300 1.370(6) 1.381(6) 0.9300 1.384(6) 1.430(5)
C(17)-C(34) C(17)-H(17) C(18)-C(43) C(18)-C(28) C(18)-H(18) C(19)-C(44) C(19)-C(29) C(20)-C(21)	 1.394(6) 0.9300 1.370(6) 1.381(6) 0.9300 1.384(6) 1.430(5) 1.384(5)

С(21)-Н(21)	0.9300
C(22)-C(30)	1.416(6)
С(22)-Н(22)	0.9300
C(23)-C(42)	1.389(6)
С(23)-Н(23)	0.9300
C(24)-H(24)	0.9300
C(25)-H(25A)	0.9700
C(25)-H(25B)	0.9700
C(26)-C(31)	1.364(6)
C(26)-C(43)	1.369(5)
C(26)-H(26)	0.9300
C(27)-C(41)	1.382(6)
C(27)-C(32)	1.504(6)
C(29)-H(29)	0.9300
C(30)-C(36)	1.387(6)
C(31)-H(31)	0.9300
C(32)-C(33)	1.515(6)
C(32)-H(32A)	0.9700
C(32)-H(32B)	0.9700
C(33)-H(33A)	0.9700
C(33)-H(33B)	0.9700
C(34)-H(34)	0.9300

C(35)-C(37)	1.367(6)
С(35)-Н(35)	0.9300
C(36)-C(39)	1.378(6)
C(36)-H(36)	0.9300
C(37)-C(45)	1.377(6)
С(37)-Н(37)	0.9300
C(38)-H(38)	0.9300
C(39)-C(40)	1.399(6)
С(39)-Н(39)	0.9300
C(40)-H(40)	0.9300
C(41)-C(45)	1.375(7)
C(41)-H(41)	0.9300
C(42)-C(44)	1.389(6)
C(42)-H(42)	0.9300
C(43)-H(43)	0.9300
C(44)-H(44)	0.9300
C(45)-H(45)	0.9300

N(7)-Mg(2)-N(7)#1	93.69(18)
N(7)-Mg(2)-N(8)	77.67(11)
N(7)#1-Mg(2)-N(8)	105.72(12)
N(7)-Mg(2)-N(8)#1	105.72(12)

N(7)#1-Mg(2)-N(8)#1	77.67(11)
N(8)-Mg(2)-N(8)#1	175.18(19)
N(7)-Mg(2)-N(9)#1	160.01(10)
N(7)#1-Mg(2)-N(9)#1	92.52(12)
N(8)-Mg(2)-N(9)#1	82.36(11)
N(8)#1-Mg(2)-N(9)#1	94.16(11)
N(7)-Mg(2)-N(9)	92.52(12)
N(7)#1-Mg(2)-N(9)	160.01(10)
N(8)-Mg(2)-N(9)	94.16(11)
N(8)#1-Mg(2)-N(9)	82.36(11)
N(9)#1-Mg(2)-N(9)	88.04(17)
C(24)-N(9)-C(11)	116.6(3)
C(24)-N(9)-Mg(2)	118.3(2)
C(11)-N(9)-Mg(2)	125.1(3)
N(6)-Mg(1)-N(5)	77.90(13)
N(6)-Mg(1)-N(3)	103.93(14)
N(5)-Mg(1)-N(3)	101.98(13)
N(6)-Mg(1)-N(2)	105.47(13)
N(5)-Mg(1)-N(2)	176.56(15)
N(3)-Mg(1)-N(2)	77.97(13)
N(6)-Mg(1)-N(1)	93.27(13)
N(5)-Mg(1)-N(1)	96.59(13)

N(3)-Mg(1)-N(1)	156.89(14)
-----------------	------------

- N(2)-Mg(1)-N(1) 82.67(13)
- N(6)-Mg(1)-N(4) 159.88(13)
- N(5)-Mg(1)-N(4) 82.49(13)
- N(3)-Mg(1)-N(4) 84.44(13)
- N(2)-Mg(1)-N(4) 94.09(13)
- N(1)-Mg(1)-N(4) 84.47(12)
- C(17)-N(7)-C(20) 105.2(3)
- C(17)-N(7)-Mg(2) 143.0(3)
- C(20)-N(7)-Mg(2) 111.4(2)
- C(23)-N(6)-C(19) 104.9(4)
- C(23)-N(6)-Mg(1) 144.0(3)
- C(19)-N(6)-Mg(1) 111.0(3)
- C(9)-N(8)-C(13) 118.3(3)
- C(9)-N(8)-Mg(2) 112.5(2)
- C(13)-N(8)-Mg(2) 128.1(2)
- C(22)-N(2)-C(25) 117.8(3)
- C(22)-N(2)-Mg(1) 112.0(3)
- C(25)-N(2)-Mg(1) 130.2(3)
- C(29)-N(5)-C(33) 119.2(3)
- C(29)-N(5)-Mg(1) 112.9(3)
- C(33)-N(5)-Mg(1) 127.6(3)

C(28)-N(1)-C(31)	116.7(3)
------------------	----------

- C(28)-N(1)-Mg(1) 124.9(3)
- C(31)-N(1)-Mg(1) 117.8(3)
- C(27)-N(4)-C(35) 116.9(4)
- C(27)-N(4)-Mg(1) 125.0(3)
- C(35)-N(4)-Mg(1) 116.7(3)
- N(8)-C(9)-C(20) 120.2(3)
- N(8)-C(9)-H(9) 119.9
- С(20)-С(9)-Н(9) 119.9
- C(28)-C(10)-C(25) 113.8(4)
- С(28)-С(10)-Н(10А) 108.8
- С(25)-С(10)-Н(10А) 108.8
- С(28)-С(10)-Н(10В) 108.8
- С(25)-С(10)-Н(10В) 108.8
- H(10A)-C(10)-H(10B) 107.7
- N(9)-C(11)-C(15) 121.8(4)
- N(9)-C(11)-C(16) 117.6(3)
- C(15)-C(11)-C(16) 120.7(3)
- C(24)-C(12)-C(38) 118.5(4)
- С(24)-С(12)-Н(12) 120.8
- C(38)-C(12)-H(12) 120.8
- N(8)-C(13)-C(16)#1 107.9(3)

N(8)-C(13)-H(13A)	110.1
-------------------	-------

- C(16)#1-C(13)-H(13A) 110.1
- N(8)-C(13)-H(13B) 110.1
- С(16)#1-С(13)-Н(13В) 110.1
- H(13A)-C(13)-H(13B) 108.4
- C(40)-N(3)-C(30) 104.7(3)
- C(40)-N(3)-Mg(1) 144.1(3)
- C(30)-N(3)-Mg(1) 110.0(3)
- C(38)-C(15)-C(11) 120.6(4)
- С(38)-С(15)-Н(15) 119.7
- С(11)-С(15)-Н(15) 119.7
- C(11)-C(16)-C(13)#1 113.1(3)
- С(11)-С(16)-Н(16А) 109.0
- C(13)#1-C(16)-H(16A) 109.0
- С(11)-С(16)-Н(16В) 109.0
- С(13)#1-С(16)-Н(16В) 109.0
- H(16A)-C(16)-H(16B) 107.8
- N(7)-C(17)-C(34) 111.8(4)
- N(7)-C(17)-H(17) 124.1
- С(34)-С(17)-Н(17) 124.1
- C(43)-C(18)-C(28) 119.7(4)
- C(43)-C(18)-H(18) 120.1

C(28)-C(18)-H(18)	120.1
-------------------	-------

- N(6)-C(19)-C(44) 110.8(4)
- N(6)-C(19)-C(29) 117.8(4)
- C(44)-C(19)-C(29) 131.3(4)
- N(7)-C(20)-C(21) 110.8(3)
- N(7)-C(20)-C(9) 118.1(3)
- C(21)-C(20)-C(9) 130.8(4)
- C(20)-C(21)-C(34) 106.3(4)
- C(20)-C(21)-H(21) 126.8
- С(34)-С(21)-Н(21) 126.8
- N(2)-C(22)-C(30) 120.8(4)
- N(2)-C(22)-H(22) 119.6
- С(30)-С(22)-Н(22) 119.6
- N(6)-C(23)-C(42) 111.9(4)
- N(6)-C(23)-H(23) 124.0
- С(42)-С(23)-Н(23) 124.0
- N(9)-C(24)-C(12) 124.2(4)
- N(9)-C(24)-H(24) 117.9
- С(12)-С(24)-Н(24) 117.9
- N(2)-C(25)-C(10) 109.4(3)
- N(2)-C(25)-H(25A) 109.8
- C(10)-C(25)-H(25A) 109.8

N(2)-C(25)-H(25B)	109.8
C(10)-C(25)-H(25B)	109.8
H(25A)-C(25)-H(25B)	108.2
C(31)-C(26)-C(43)	118.4(4)
С(31)-С(26)-Н(26)	120.8
C(43)-C(26)-H(26)	120.8
N(4)-C(27)-C(41)	121.3(4)
N(4)-C(27)-C(32)	118.8(4)
C(41)-C(27)-C(32)	119.9(4)
N(1)-C(28)-C(18)	121.9(4)
N(1)-C(28)-C(10)	117.4(4)
C(18)-C(28)-C(10)	120.7(3)
N(5)-C(29)-C(19)	120.1(4)
N(5)-C(29)-H(29)	120.0
С(19)-С(29)-Н(29)	120.0
N(3)-C(30)-C(36)	110.5(4)
N(3)-C(30)-C(22)	118.1(4)
C(36)-C(30)-C(22)	131.4(4)
N(1)-C(31)-C(26)	124.0(4)
N(1)-C(31)-H(31)	118.0
С(26)-С(31)-Н(31)	118.0
C(27)-C(32)-C(33)	115.6(4)

108.4

- C(33)-C(32)-H(32A) 108.4
- С(27)-С(32)-Н(32В) 108.4
- C(33)-C(32)-H(32B) 108.4
- H(32A)-C(32)-H(32B) 107.5
- N(5)-C(33)-C(32) 110.3(3)
- N(5)-C(33)-H(33A) 109.6
- C(32)-C(33)-H(33A) 109.6
- N(5)-C(33)-H(33B) 109.6
- С(32)-С(33)-Н(33В) 109.6
- H(33A)-C(33)-H(33B) 108.1
- C(21)-C(34)-C(17) 105.9(4)
- C(21)-C(34)-H(34) 127.0
- С(17)-С(34)-Н(34) 127.0
- N(4)-C(35)-C(37) 124.3(4)
- N(4)-C(35)-H(35) 117.9
- С(37)-С(35)-Н(35) 117.9
- C(39)-C(36)-C(30) 107.1(4)
- С(39)-С(36)-Н(36) 126.5
- С(30)-С(36)-Н(36) 126.5
- C(35)-C(37)-C(45) 118.3(5)
- С(35)-С(37)-Н(37) 120.9

С(45)-С(37)-Н(37)	120.9
C(15)-C(38)-C(12)	118.3(4)
C(15)-C(38)-H(38)	120.9
C(12)-C(38)-H(38)	120.9
C(36)-C(39)-C(40)	105.6(4)
С(36)-С(39)-Н(39)	127.2
C(40)-C(39)-H(39)	127.2
N(3)-C(40)-C(39)	112.1(4)
N(3)-C(40)-H(40)	124.0
C(39)-C(40)-H(40)	124.0
C(45)-C(41)-C(27)	120.7(4)
C(45)-C(41)-H(41)	119.6
C(27)-C(41)-H(41)	119.6
C(44)-C(42)-C(23)	105.6(4)
C(44)-C(42)-H(42)	127.2
C(23)-C(42)-H(42)	127.2
C(26)-C(43)-C(18)	119.1(4)
C(26)-C(43)-H(43)	120.4
C(18)-C(43)-H(43)	120.4
C(19)-C(44)-C(42)	106.7(4)
C(19)-C(44)-H(44)	126.7
C(42)-C(44)-H(44)	126.7

C(41)-C(45)-C(37)	118.4(4)
C(41)-C(45)-H(45)	120.8
C(37)-C(45)-H(45)	120.8

2.3 Bond angles and distances for complex $\mathbf{3}$

Mg(1)-O(1)	2.121(3)
Mg(1)-N(3)	2.125(3)
Mg(1)-O(2)	2.141(3)
Mg(1)-N(1)	2.144(3)
Mg(1)-N(4)	2.257(3)
Mg(1)-N(2)	2.261(3)
N(2)-C(5)	1.301(4)
N(2)-C(6)	1.426(4)
N(4)-C(16)	1.302(4)
N(4)-C(17)	1.423(4)
O(2)-C(27)	1.418(5)
O(2)-C(30)	1.426(5)
N(1)-C(4)	1.340(4)
N(1)-C(1)	1.375(4)
O(1)-C(23)	1.441(4)
O(1)-C(26)	1.443(5)
N(3)-C(15)	1.337(4)
N(3)-C(12)	1.380(4)
C(5)-C(1)	1.413(5)
C(12)-C(16)	1.399(5)
C(12)-C(13)	1.410(5)
C(6)-C(11)	1.388(5)
C(6)-C(7)	1.389(5)
C(1)-C(2)	1.393(5)
C(17)-C(18)	1.390(5)
C(17)-C(22)	1.393(5)
C(2)-C(3)	1.373(5)
C(15)-C(14)	1.388(5)
C(11)-C(10)	1.380(5)
C(18)-C(19)	1.388(5)
C(4)-C(3)	1.391(5)
C(9)-C(10)	1.373(5)

C(9)-C(8)	1.386(5)
C(8)-C(7)	1.379(5)
C(20)-C(21)	1.359(6)
C(20)-C(19)	1.381(6)
C(14)-C(13)	1.373(5)
C(22)-C(21)	1.394(6)
C(26)-C(25)	1.455(6)
C(30)-C(29)	1.468(6)
C(23)-C(24)	1.492(7)
C(29)-C(28)	1.476(7)
C(27)-C(28)	1.465(6)
C(24)-C(25)	1.432(7)
O(1)-Mg(1)-N(3)	90.74(11)
O(1)-Mg(1)-O(2)	177.82(12)
N(3)-Mg(1)-O(2)	89.06(11)
O(1)-Mg(1)-N(1)	92.82(11)
N(3)-Mg(1)-N(1)	175.95(12)
O(2)-Mg(1)-N(1)	87.46(11)
O(1)-Mg(1)-N(4)	89.02(11)
N(3)-Mg(1)-N(4)	78.67(11)
O(2)-Mg(1)-N(4)	88.81(11)
N(1)-Mg(1)-N(4)	103.31(11)
O(1)-Mg(1)-N(2)	90.76(11)
N(3)-Mg(1)-N(2)	99.53(12)
O(2)-Mg(1)-N(2)	91.41(11)
N(1)-Mg(1)-N(2)	78.49(11)
N(4)-Mg(1)-N(2)	178.19(11)
C(5)-N(2)-C(6)	117.0(3)
C(5)-N(2)-Mg(1)	108.5(2)
C(6)-N(2)-Mg(1)	134.1(2)
C(16)-N(4)-C(17)	117.5(3)
C(16)-N(4)-Mg(1)	108.5(2)
C(17)-N(4)-Mg(1)	134.0(2)
C(27)-O(2)-C(30)	109.5(3)
C(27)-O(2)-Mg(1)	123.2(2)
C(30)-O(2)-Mg(1)	126.8(2)
C(4)-N(1)-C(1)	104.9(3)
C(4)-N(1)-Mg(1)	144.4(3)
C(1)-N(1)-Mg(1)	110.4(2)
C(23)-O(1)-C(26)	109.1(3)
C(23)-O(1)-Mg(1)	125.9(2)
C(26)-O(1)-Mg(1)	124.7(2)
C(15)-N(3)-C(12)	105.7(3)

142.9(3)
110.8(2)
121.6(3)
120.0(3)
109.4(3)
130.5(3)
118.7(3)
119.6(3)
121.7(3)
110.7(3)
120.2(3)
129.1(3)
119.3(3)
118.8(3)
121.9(3)
121.9(3)
106.3(3)
112.0(4)
120.9(3)
120.2(4)
111.9(3)
120.1(3)
119.9(4)
120.5(3)
119.8(3)
120.1(4)
106.4(3)
120.0(4)
106.3(3)
119.3(4)
121.1(4)
106.3(4)
106.5(3)
106.8(3)
105.9(4)
105.4(4)
106.8(4)
105.9(4)
104.5(4)
107.2(4)

_

2.4 Bond angles and distances for complex 4

 Mg(1)-N(1)	2.1393(15)
Mg(1)-O(1)	2.1406(16)
Mg(1)-O(2)	2.1455(15)
Mg(1)-N(3)	2.1480(15)
Mg(1)-N(2)	2.1938(17)
Mg(1)-N(4)	2.2124(16)
N(4)-C(17)	1.284(2)
N(4)-C(18)	1.469(2)
N(2)-C(5)	1.284(2)
N(2)-C(6)	1.463(2)
N(1)-C(1)	1.354(2)
N(1)-C(4)	1.378(2)
O(2)-C(29)	1.424(3)
O(2)-C(32)	1.435(2)
N(3)-C(13)	1.351(2)
N(3)-C(16)	1.378(2)
O(1)-C(25)	1.411(3)
O(1)-C(28)	1.426(3)
C(7)-C(12)	1.384(2)
C(7)-C(8)	1.386(2)
C(7)-C(6)	1.512(2)

C(19)-C(24)	1.385(3)
C(19)-C(20)	1.385(3)
C(19)-C(18)	1.507(3)
C(17)-C(16)	1.432(2)
C(4)-C(3)	1.394(2)
C(4)-C(5)	1.431(3)
C(13)-C(14)	1.388(3)
C(16)-C(15)	1.394(2)
C(15)-C(14)	1.388(3)
C(12)-C(11)	1.386(3)
C(8)-C(9)	1.389(3)
C(3)-C(2)	1.387(3)
C(1)-C(2)	1.389(3)
C(24)-C(23)	1.382(3)
C(9)-C(10)	1.377(3)
C(9)-C(10) C(32)-C(31)	1.377(3) 1.502(3)
C(9)-C(10) C(32)-C(31) C(10)-C(11)	1.377(3) 1.502(3) 1.374(3)
C(9)-C(10) C(32)-C(31) C(10)-C(11) C(20)-C(21)	 1.377(3) 1.502(3) 1.374(3) 1.380(3)
C(9)-C(10) C(32)-C(31) C(10)-C(11) C(20)-C(21) C(23)-C(22)	 1.377(3) 1.502(3) 1.374(3) 1.380(3) 1.375(4)
C(9)-C(10) C(32)-C(31) C(10)-C(11) C(20)-C(21) C(23)-C(22) C(21)-C(22)	 1.377(3) 1.502(3) 1.374(3) 1.380(3) 1.375(4) 1.380(3)
C(9)-C(10) C(32)-C(31) C(10)-C(11) C(20)-C(21) C(23)-C(22) C(21)-C(22) C(25)-C(26)	 1.377(3) 1.502(3) 1.374(3) 1.380(3) 1.375(4) 1.380(3) 1.462(4)

C(26)-C(27)	1.456(5)
C(28)-C(27)	1.445(5)

1.463(5)

C(30)-C(31)

N(1)-Mg(1)-O(1)	94.63(6)

- N(1)-Mg(1)-O(2) 93.07(6)
- O(1)-Mg(1)-O(2) 85.23(7)
- N(1)-Mg(1)-N(3) 169.32(6)
- O(1)-Mg(1)-N(3) 92.66(7)
- O(2)-Mg(1)-N(3) 95.30(6)
- N(1)-Mg(1)-N(2) 78.65(6)
- O(1)-Mg(1)-N(2) 173.25(6)
- O(2)-Mg(1)-N(2) 94.34(6)
- N(3)-Mg(1)-N(2) 94.09(6)
- N(1)-Mg(1)-N(4) 92.95(6)
- O(1)-Mg(1)-N(4) 94.17(6)
- O(2)-Mg(1)-N(4) 173.98(6)
- N(3)-Mg(1)-N(4) 78.74(6)
- N(3)-Mg(1)-N(4) 78.74(
- N(2)-Mg(1)-N(4) 86.95(6)
- C(17)-N(4)-C(18) 117.81(15)
- C(17)-N(4)-Mg(1) 110.52(11)
- C(18)-N(4)-Mg(1) 130.62(11)

C(5)-N(2)-C(6)	118.70(15)
C(5)-N(2)-Mg(1)	110.80(12)
C(6)-N(2)-Mg(1)	129.49(11)
C(1)-N(1)-C(4)	104.80(15)
C(1)-N(1)-Mg(1)	144.26(13)
C(4)-N(1)-Mg(1)	110.22(11)
C(29)-O(2)-C(32)	106.87(17)
C(29)-O(2)-Mg(1)	123.01(14)
C(32)-O(2)-Mg(1)	130.10(12)
C(13)-N(3)-C(16)	104.73(14)
C(13)-N(3)-Mg(1)	144.75(13)
C(16)-N(3)-Mg(1)	110.32(10)
C(25)-O(1)-C(28)	106.89(18)
C(25)-O(1)-Mg(1)	128.31(12)
C(28)-O(1)-Mg(1)	123.32(14)
C(12)-C(7)-C(8)	118.35(17)
C(12)-C(7)-C(6)	120.86(16)
C(8)-C(7)-C(6)	120.76(15)
C(24)-C(19)-C(20)	118.34(19)
C(24)-C(19)-C(18)	121.42(17)
C(20)-C(19)-C(18)	120.22(17)
N(4)-C(17)-C(16)	120.97(16)

N(2)-C(6)-C(7)	112.16(14)
N(1)-C(4)-C(3)	110.91(17)
N(1)-C(4)-C(5)	118.70(15)
C(3)-C(4)-C(5)	130.38(17)
N(2)-C(5)-C(4)	120.50(16)
N(4)-C(18)-C(19)	112.42(15)
N(3)-C(13)-C(14)	112.04(16)
N(3)-C(16)-C(15)	110.94(15)
N(3)-C(16)-C(17)	119.09(14)
C(15)-C(16)-C(17)	129.89(17)
C(14)-C(15)-C(16)	106.09(16)
C(7)-C(12)-C(11)	120.93(19)
C(7)-C(8)-C(9)	120.76(17)
C(2)-C(3)-C(4)	106.18(18)
C(15)-C(14)-C(13)	106.20(15)
N(1)-C(1)-C(2)	111.84(18)
C(23)-C(24)-C(19)	120.8(2)
C(10)-C(9)-C(8)	120.05(19)
O(2)-C(32)-C(31)	106.63(19)
C(3)-C(2)-C(1)	106.27(16)
C(11)-C(10)-C(9)	119.75(18)
C(21)-C(20)-C(19)	121.1(2)

C(10)-C(11)-C(12)	120.15(19)
-------------------	------------

C(22)-C(23)-C(24) 120.2(2)

C(20)-C(21)-C(22) 119.9(2)

C(23)-C(22)-C(21) 119.7(2)

O(1)-C(25)-C(26) 107.5(2)

C(30)-C(29)-O(2) 108.6(3)

C(27)-C(26)-C(25) 106.1(3)

O(1)-C(28)-C(27) 105.9(3)

C(29)-C(30)-C(31) 108.0(3)

C(28)-C(27)-C(26) 105.6(3)

C(30)-C(31)-C(32) 104.7(2)