Electronic Supplementary information (ESI)

Diastereoselective addition to *N*-acyliminium ions with aryl- and alkenyl boronic acids *via* a Petasis-type reaction

Satoshi Mizuta, Osamu Onomura*

Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

ble of Contents:	
General Methods	S1-S2
Experimental Procedures and Characterization Data	S2–S17
References	S-18
¹ H, ¹³ C and ¹⁹ F NMR Spectra	S19-49
	General Methods Experimental Procedures and Characterization Data References ¹ H , ¹³ C and ¹⁹ F NMR Spectra

1. General Methods.

All manipulations of oxygen- and moisture-sensitive materials were conducted with a test tube under a nitrogen atmosphere. All melting points are measured by MICRO MELTING POINT APPARATUS (Yanaco) and these are not corrected. ¹H, ¹³C and ¹⁹F NMR spectra were taken at 400, 100 and 376 MHz, with on JEOL AL 400 respectively using tetramethylsilane (¹H and ¹³C) and trichlorofluoromethane (¹⁹F) as an internal standard. Since the presence of rotamers for each compounds (**2–4**, **7d**, **7h**, **7i**, **7o**, **7q**, **7r**, **8**, **9a**, and **9b**) were confirmed by NMR analysis at ambient temperature, variable-temperature NMR spectroscopy at about 50 °C were performed. Infrared spectra were recorded on a Shimadzu IRAffinity-1 spectrometer and expressed in cm⁻¹. Mass spectra (MS) and high resolution mass spectra were recorded with JEOL JMS-700N instrument using electron ionization (EI) mass spectrometry. Flash column chromatography was performed using silica gel 60 (230-400 mesh, Nacalai tesque) with the indicated solvents. Thin-layer chromatography was performed using 0.25 mm silica gel plates (Merck).

Materials.

Unless noted otherwise, all starting materials and reagents were obtained from commercial suppliers and were used without further purification. All chemicals were purchased from Aldrich, Nacalai tesque, Tokyo Chemical Industry and Wako Pure Chemical Industries and used as received. Dry dichloromethane was purchased from Wako Pure Chemical Industries. The preparation of 1^1 , 2^2 , 4^3 , and $9c^4$ has been reported. The synthesis of the *cis*-isomers (**7a**, **7b**, **7d**, and **7j**) has been reported⁵ and the ¹H NMR datas of compounds prepared by us is consistent with literature examples. The coupling constant $J_{2,3}$ values for *cis*-isomers were 5.6–5.8 Hz, compared with <1.0 Hz for the corresponding *trans*-isomers.^{8, 13} The stereochemistry of **7c**, **7e**, **7f–i**, **7k**, **7m–r** and **8** was readily determined from the examination of the coupling constant $J_{2,3}$, which was 5.2–6.1 Hz, consistent with $J_{2,3}$ values for *cis*-isomers.

. On the other hand, the major isomer were expected to be the *trans*-isomer **10a**–c by the examination of their coupling constant $J_{2,3}$ = <1.0 Hz, consistent with examples for *trans*-2-aryl-3-hydroxypiperidines.

2. Experimental Procedures and Characterization data Preparation of N-Protected-3-hydroxy-2-methoxypiperidine 2–4

General Procedure

A solution of *N*-carbomethoxy-1,2,3,4-tetrahydropyridine⁶ (10.1 mmol) in MeOH (20 mL) was added to a suspension of Oxone (7.38 g, 12.0 mmol) and NaHCO₃ (1.01 g, 12.0 mmol) in MeOH (20 mL) at room temperature. After stirring for 2 h, further Oxone (7.38 g, 12.0 mmol) and NaHCO₃ (1.01 g, 12.0 mmol) was added. The mixture was stirred for 12 h, after which solids were removed by filtration. The filtrate was diluted with EtOAc (50 mL) and saturated aqueous NaHCO₃ (50 mL). The layers were separated and the aqueous phase was extracted with EtOAc (2×50 mL). The combined organic layers were washed with brine (50 mL), dried over MgSO₄ and concentrated *in vacuo*. Product was obtained as a colorless oil which was purified by silica gel column chromatography (EtOAc/*n*-hexane=1/1).

N-Methoxycarbonyl-3-hydroxy-2-methoxypiperidine (2): inseparable mixture of diastereomers (dr = 1/1), colorless oil, 22% yield; IR (neat) 3431, 2947, 1682, 1443, 1408, 1373, 1348, 1263, 1192, 1155, 1132, 1076, 1040, 995, 962, 770, 733, 664 cm⁻¹; ¹H NMR (CDCl₃, 50 °C) δ 1.40–2.07 (m, 5H), 2.82 (t, *J*=13.0 Hz, 1/2H), 2.95 (dt, *J*=3.0, 13.0 Hz, 1/2H), 3.28 (s, 3/2H), 3.33 (s, 3/2H), 3.48–3.58 (m, 1/2H), 3.73 (s, 3/2H), 3.79 (s, 3/2H), 3.89–4.00 (m, 3/2H), 5.13–5.52 (m, 1H); ¹³C NMR (CDCl₃, 50 °C) δ 18.6, 23.9, 25.6, 27.8, 37.7, 38.4, 52.6, 54.6, 55.1, 66.0, 69.1, 84.5, 85.4, 156.2, 157.3; HRMS (EI) m/z Anal. Calcd for C₈H₁₅NO₄ 189.1001, found [M]⁺ 189.0995.

N-Phenoxycarbonyl-3-hydroxy-2-methoxypiperidine (3): inseparable mixture of diastereomers (dr = 1/1), colorless oil, 66% yield; IR (neat) 3437, 2938, 1697, 1412, 1373, 1350, 1263, 1200, 1153, 1069, 1024, 997, 966, 864, 800, 748, 689, 667, 601 cm⁻¹; ¹H NMR (CDCl₃, 50 °C), rotamers, δ 1.45–2.16 (m, 5 H), 2.86–3.17 (m, 1H), 3.39 (s, 3/2H), 3.44 (s, 3/2H), 3.59–3.71 (m, 1/2H), 3.90–4.13 (m, 3/2H), 5.34 (s, 1/2H), 5.49 (s, 1/2H), 7.11 (t, *J*=7.1 Hz, 2H), 7.17–7.21 (m, 1H), 7.33–7.37 (m, 2H); ¹³C NMR (CDCl₃, 50 °C), rotamers, δ 18.4, 23.4–23.8, 25.2, 27.4, 37.6, 38.2–39.0, 54.5, 54.8–55.5, 65.5, 68.7–68.9, 84.0–84.9, 85.7, 121.1, 121.3, 124.9, 125.1, 128.8, 128.9, 150.9, 151.1, 153.4–153.9, 154.8; HRMS (EI) m/z Anal. Calcd for C₁₃H₁₇NO₄ 251.1158, found [M]⁺ 251.1144.

N-Benxyloxycarbonyl-3-hydroxy-2-methoxypiperidine (4): inseparable mixture of diastereomers (dr = 1/1), colorless oil, 68% yield; IR (neat) 3421, 2940, 1678, 1418, 1344, 1304, 1260, 1192, 1153, 1130, 1074, 1028, 961, 874, 766, 735, 696, 664, 604 cm⁻¹; ¹H NMR (CDCl₃, 50 °C), δ 1.35–2.06 (m, 5 H), 2.83 (t, *J*=12.7 Hz, 1/2H), 2.97 (t, *J*=12.7 Hz, 1/2H), 3.24 (s, 3/2H), 3.28–3.39 (m, 3/2H), 3.50–3.59 (m, 1/2H), 3.81–4.02 (m, 3/2H), 5.07–5.48 (m, 3H), 7.32 (br. s, 5H); ¹³C NMR (CDCl₃, 50 °C) δ 18.7, 23.9, 25.6, 28.0, 37.8, 38.5, 54.8, 55.1–55.8, 66.2, 67.3, 67.4, 69.1, 84.5, 85.5, 127.8, 128.0, 128.1, 128.47, 128.51, 136.4, 136.6, 155.6, 156.7; HRMS (EI) m/z Anal. Calcd for C₁₄H₁₉NO₄ 265.1314, found [M]⁺ 265.1317.

Optimization for the diastereoselective nucleophilic substitution of N,O-acetals with phenylboronic acid

			,OH ↑ ℃Me R ¹	OR R ² O ^{7 B} F	Ph $\frac{BF_3 \cdot Et_2C}{Solv}$	D (1.0 eq) vent	- N-C 5:	OH M Ph O_2R^1 a - 7a	
Entry	R ¹ (3	Substrate)	OR ² , OR ²	Solvent	Temp	Time (h)	Product	dr (<i>cis</i> : <i>trans</i>) ^{a}	Yield $(\%)^b$
1	Me	(2)	OH, OH	CH ₂ Cl ₂	-30 °C to rt	6	5a	_	trace
2	Ph	(3)	ОН, ОН	CH_2Cl_2	-30 °C to rt	18	6a	7.2:1	14
3	Ph	(3)	$O(CH_2)_2O$	CH_2Cl_2	-30 °C to rt	18	6a	—	trace
4	Ph	(3)	ОН, ОН	CH_2Cl_2	–78 °C to rt	18	6a	_	0
5	Bn	(4)	ОН, ОН	CH_2Cl_2	-30 °C to rt	24	7a	8.3:1	69
6^c	Bn	(4)	ОН, ОН	CH_2Cl_2	-30 °C to rt	24	7a	—	0
7	Bn	(4)	OH, OH	MeCN	-30 °C to rt	24	7a	_	0

Table 1. Diastereoselective nucleophilic substitution of N-acyliminium ions with phenyl boronic acid.

^{*a*} The diastereomer ratio was determined by ¹H-NMR spectroscopy of the crude mixture. ^{*b*} Yield of isolated product after purification by column chromatography ^{*c*} The reaction performed with 1.0 equivalent of TiCl₄ instead of BF₃·Et₂O.

As shown in Table 1, we examined the optimization conditions for Lewis acid-mediated arylation reactions with phenylboronic acid and *N*-acyliminium ion precursors **2–4**. An initial survey using substrate **2** indicated that the reaction in the presence of BF₃·Et₂O did not proceed. The *N*,*O*-acetal **3** possessing a *N*-phenoxycarbonyl group reacted slightly with phenyboronic acid, providing the desired product **6a**. The use of the corresponding ethylene glycol boronate did not obtained practically the desired product **6a**. In contrast, the reaction of *N*-Cbz piperidine **4** proceeded with good diastereoselectivity (*cis:trans*=8.2:1 by ¹H NMR), and gave the *cis*-adduct **7a** in 69% yield as a single isomer after purification by column chromatography. Otherwise, TiCl₄ was found to be a poor mediator. In addition, this process at low temperature –78 °C was ineffective. The reaction in MeCN was carried out, however the desired product **7a** did not obtained.

Examination of the presence and absence of the isomerization for 7a

We performed examinations on dependence of diastereoselectivity on the presence or absence of epimerization for *cis*-**7a** caused by $BF_3 \cdot Et_2O$ to elucidate an origin of the lower diastereoselectivity of **7a**. A solution of *cis*-**7a** in dichloromethane was added $BF_3 \cdot Et_2O$ at room temperature. After stirring for 12 h, the diastereomer ratio was detected by ¹H NMR analysis, however the conversion from *cis*- to *trans*-isomers did not been observed.

Preparation of N-Alkoxycarbonyl-2-arylpiperidin-3-ol (6-8)

General Procedure

To stirred suspension of substrate (0.50 mmol) and organoboronic acid (0.50 mmol) in CH₂Cl₂ (2.0 mL) were added BF₃·OEt₂ (61.7 μ L, 0.50 mmol) at -30 °C under N₂ atmosphere. The reaction mixture was warmed to rt over 4 h and stirred for a time specified in Table 1 and 2 of a letter, quenched with saturated aqueous NH₄Cl (10 mL) and the aqueous phase was extracted with EtOAc (2 × 10 mL). The combined organic phases were washed with brine (10 mL), dried over MgSO₄ and concentrated *in vacuo*. Flash chromatography (EtOAc/*n*-hexane=1/1) afforded a desired product. The diastereomer ratio was determined by ¹H NMR analysis of the crude mixtures. The spectral data of the arylation products (**6–8**) are as follows.

N-Phenoxycarbonyl-*cis*-2-phenylpiperidine-3-ol (6a): The title compound was prepared according to the general procedure. From **3** (125.8 mg, 0.50 mmol) and phenylboronic acid (61.0 mg, 0.50 mmol) , BF₃·OEt₂ (61.7 μL, 0.50 mmol) with stirring for 18 h. The diastereomer ratio (*cis/trans* = 7.2/1) was determined by ¹H NMR analysis of the crude mixtures. Column chromatography (EtOAc/*n*-hexane=1/2 to 1/1) of the crude residue afforded **6a** (20.0 mg, 14%) as a colorless paste as a single isomer. IR (neat) 3441, 2945, 1692, 1494, 1416, 1366, 1263, 1200, 1163, 1146, 1078, 1024, 962, 862, 731, 698, 548 cm⁻¹; ¹H NMR (CDCl₃), δ 1.51–1.95(m, 5H), 3.19 (dt, *J*=4.2, 13.0 Hz, 1H), 4.17–4.19 (m, 2H), 5.54 (d, *J*=5.9 Hz, 1H), 7.01 (d, *J*=7.6 Hz, 2H), 7.17 (t, *J*=7.6 Hz, 1H), 7.31–7.39 (m, 5H), 7.54 (d, *J*=7.6 Hz, 2H); ¹³C NMR (CDCl₃) δ 23.1, 27.6, 40.1, 59.6, 69.9, 121.6, 125.3, 127.5, 128.4, 128.6, 129.2, 137.5, 151.3, 154.5; HRMS (EI) m/z Anal. Calcd for C₁₈H₁₉NO₃ 297.1365, found [M]⁺ 297.1361.

N-Benzyloxycarbonyl-*cis*-2-phenylpiperidin-3-ol (7a): The title compound was prepared according to the general procedure. From **4** (132.7 mg, 0.50 mmol) and phenylboronic acid (61.0 mg, 0.50 mmol), BF₃·OEt₂ (61.7 µL, 0.50 mmol) with stirring for 24 h. The diastereomer ratio (*cis/trans* = 8.3/1) was determined by ¹H NMR analysis of the crude mixtures. Column chromatography (EtOAc/*n*-hexane=1/2 to 1/1) of the crude residue afforded **7a** (108 mg, 69%) as a colorless paste as a single isomer. IR (neat) 3441, 2945, 1670, 1421, 1252, 1148, 1082, 1063, 962, 735, 698 cm⁻¹; ¹H NMR (CDCl₃) δ 1.65–2.10 (m, 5H), 3.05 (t, *J*=12.7 Hz, 1H), 4.05–4.10 (m, 2H), 5.08 (d, *J*=12.5 Hz, 1H), 5.13 (d, *J*=12.5 Hz, 1H), 5.44 (d, *J*=5.6 Hz, 1H), 7.23–7.35 (m, 8H), 7.46 (d, *J*=7.6 Hz, 2H); ¹³C NMR (CDCl₃) δ 23.2, 27.5, 39.7, 59.1, 67.3, 67.0, 127.3, 127.6, 127.9, 128.4, 128.41, 128.44, 136.5, 137.7, 155.9; HRMS (EI) m/z Anal. Calcd for C₁₉H₂₁NO₃ 311.1521, found [M]⁺ 311.1502.

N-Benzyloxycarbonyl-*cis*-2-(4-methoxyphenyl)piperidin-3-ol (7b): The title compound was prepared according to the general procedure. From **4** (132.7 mg, 0.50 mmol) and 4-methoxyphenylboronic acid (76.0 mg, 0.50 mmol), BF₃·OEt₂ (61.7 µL, 0.50 mmol) with stirring for 5 h. The only *cis*-isomer was observed by ¹H NMR analysis of the crude mixtures. Column chromatography (EtOAc/*n*-hexane=1/2 to 1/1) of the crude residue afforded **7b** (146.9 mg, 86%) as a colorless paste as a single isomer. IR (neat) 3443, 2940, 1670, 1611, 1510, 1422, 1342, 1246, 1179, 1148, 1080, 1028, 962, 831, 760, 734, 696, 606 cm⁻¹; ¹H NMR (CDCl₃) δ 1.59–1.98 (m, 5H), 3.02 (dt, *J*=3.7, 13.2 Hz, 1H), 3.79 (s, 3H), 4.01–4.08 (m, 2H), 5.08 (d, *J*=12.2 Hz, 1H), 5.13 (d, *J*=12.2 Hz, 1H), 5.42 (d, *J*=5.6 Hz, 1H), 6.85 (d, *J*=8.5 Hz, 2H), 7.25–7.34 (m, 5H), 7.39 (d, *J*=8.5 Hz, 2H); ¹³C NMR (CDCl₃) δ 23.4, 27.7, 39.6, 55.2, 58.5, 67.2, 70.0, 113.8, 127.7, 127.9, 128.4, 129.5, 129.8, 136.6, 155.9, 158.7; HRMS (EI) m/z Anal. Calcd for C₂₀H₂₃NO₄ 341.1627, found [M]⁺ 341.1628.

N-Benzyloxycarbonyl-*cis*-2-[4-(methylthio)phenyl]piperidin-3-ol (7c): The title compound was prepared according to the general procedure. From 4 (132.7 mg, 0.50 mmol) and

4-(methylthio)phenylboronic acid (84.0 mg, 0.50 mmol), BF₃·OEt₂ (61.7 µL, 0.50 mmol) with stirring for 5 h. The only *cis*-isomer was observed by ¹H NMR analysis of the crude mixtures. Column chromatography (EtOAc/*n*-hexane=1/2 to 1/1) of the crude residue afforded **7c** (126.0 mg, 71%) as a colorless paste as a single isomer. IR (neat) 3429, 2945, 1670, 1495, 1422, 1344, 1248, 1148, 1080, 1028, 961, 824, 733, 693, 606, 557 cm⁻¹; ¹H NMR (CDCl₃) δ 1.56–1.86 (m, 5H), 2.96 (dt, *J*=3.2, 13.2 Hz, 1H), 3.79 (s, 3H), 4.01–4.06 (m, 2H), 5.08 (d, *J*=12.4 Hz, 1H), 5.14 (d, *J*=12.4 Hz, 1H), 5.44 (d, *J*=5.4 Hz, 1H), 7.18 (d, *J*=8.3 Hz, 2H), 7.26–7.36 (m, 5H), 7.41 (d, *J*=8.3 Hz, 2H); ¹³C NMR (CDCl₃) δ 15.6, 23.4, 27.5, 39.6, 58.4, 67.2, 70.0, 126.3, 127.6, 127.9, 128.3, 129.0, 134.4, 136.4, 137.2, 155.8; HRMS (EI) m/z Anal. Calcd for C₂₀H₂₃NO₃S 357.1399, found [M]⁺ 357.1387.

N-Benzyloxycarbonyl-*cis*-2-(4-methylphenyl)piperidin-3-ol (7d): The title compound was prepared according to the general procedure. From 4 (132.7 mg, 0.50 mmol) and 4-methylphenylboronic acid (68.0 mg, 0.50 mmol), BF₃·OEt₂ (61.7 μL, 0.50 mmol) with stirring for 19 h. The only *cis*-isomer was observed by ¹H NMR analysis of the crude mixtures. Column chromatography (EtOAc/*n*-hexane=1/2 to 1/1) of the crude residue afforded 7d (108.3 mg, 67%) as a colorless paste as a single isomer. IR (neat) 3424, 2943, 1670, 1514, 1421, 1342, 1250, 1182, 1148, 1080, 1063, 1028, 962, 816, 735, 696, 608, 569 cm⁻¹; ¹H NMR (CDCl₃, 50 °C) δ 1.66–1.86 (m, 4H), 2.33 (s, 3H), 3.10 (dt, *J*=3.6, 13.4 Hz, 1H), 4.05–4.10 (m, 2H), 5.08 (d, *J*=12.4 Hz, 1H), 5.13 (d, *J*=12.4 Hz, 1H), 5.39 (d, *J*=5.8 Hz, 1H), 7.12 (d, *J*=8.0 Hz, 2H), 7.21–7.34 (m, 7H); ¹³C NMR (CDCl₃) δ 20.9, 23.3, 27.5, 39.6, 58.7, 67.2, 69.9, 127.6, 127.8, 128.3, 128.4, 129.0, 134.5, 136.5, 136.7, 155.8; HRMS (EI) m/z Anal. Calcd for C₂₀H₂₃NO₃ 325.1678, found [M]⁺ 325.1667.

N-Benzyloxycarbonyl-*cis*-2-(3-methyphenyl)piperidin-3-ol (7e): The title compound was prepared according to the general procedure. From 4 (132.7 mg, 0.50 mmol) and 3-methylphenylboronic acid (68.0 mg, 0.50 mmol), BF₃·OEt₂ (61.7 μ L, 0.50 mmol) with stirring for 24 h. The only *cis*-isomer was observed by ¹H NMR analysis of the crude mixtures. Column chromatography (EtOAc/*n*-hexane=1/2 to 1/1) of the crude residue afforded 7e (107.3 mg, 66%) as a colorless paste as a single isomer. IR (neat) 3431, 2943, 1670, 1420, 1342, 1250, 1146, 1080, 1063, 1028, 966, 908, 887, 870, 793, 733, 696, 608 cm⁻¹; ¹H NMR (CDCl₃) δ 1.59–1.89 (m, 4H), 2.15 (br.

s, OH), 2.31 (s, 3H), 3.06 (dt, *J*=3.7, 13.2 Hz, 1H), 4.00–4.10 (m, 2H), 5.06 (d, *J*=12.4 Hz, 1H), 5.13 (d, *J*=12.4 Hz, 1H), 5.39 (d, *J*=5.4 Hz, 1H), 7.07 (d, *J*=7.3 Hz, 1H), 7.18–7.28 (m, 8H); ¹³C NMR (CDCl₃) δ 21.5, 23.1, 27.4, 39.7, 59.1, 67.2, 69.8, 125.3, 127.6, 127.8, 128.0, 128.2, 128.3, 129.2, 136.5, 137.6, 138.0, 155.9; HRMS (EI) m/z Anal. Calcd for C₂₀H₂₃NO₃ 325.1678, found [M]⁺ 325.1679.

N-Benzyloxycarbonyl-*cis*-2-(2-methyphenyl)piperidin-3-ol (7f): The title compound was prepared according to the general procedure. From **4** (132.7 mg, 0.50 mmol) and 2-methylphenylboronic acid (68.0 mg, 0.50 mmol), BF₃·OEt₂ (61.7 μL, 0.50 mmol) with stirring for 24 h. The only *cis*-isomer was observed by ¹H NMR analysis of the crude mixtures. Column chromatography (EtOAc/*n*-hexane=1/2 to 1/1) of the crude residue afforded **7f** (79.0 mg, 49%) as a colorless paste as a single isomer. IR (neat) 3443, 2945, 1672, 1416, 1342, 1260, 1150, 1126, 1078, 1055, 1016, 959, 770, 729, 696, 608 cm⁻¹; ¹H NMR (CDCl₃) δ 1.43 (br. s, OH), 1.78–1.97 (m, 4H), 2.03 (s, 3H), 3.46 (dt, *J*=4.9, 13.2 Hz, 1H), 4.05–4.11 (m, 1H), 4.15 (dd, *J*=5.1, 14.2 Hz, 1H), 4.95 (d, *J*=12.4 Hz, 1H), 5.04 (d, *J*=12.4 Hz, 1H), 5.36 (d, *J*=5.4 Hz, 1H), 7.05 (br. s, 2H), 7.13–7.19 (m, 3H), 7.24–7.28 (m, 3H), 7.35–7.37 (m, 1H); ¹³C NMR (CDCl₃) δ 19.7, 21.2, 26.4, 40.0, 56.8, 67.2, 67.6, 126.0, 127.2, 127.4, 127.6, 127.8, 128.3, 130.9, 136.4, 137.1, 137.2, 155.9; HRMS (EI) m/z Anal. Calcd for C₂₀H₂₃NO₃ 325.1678, found [M]⁺ 325.1683.

N-Benzyloxycarbonyl-*cis*-2-(3-biphenyl)piperidin-3-ol (7g): The title compound was prepared according to the general procedure. From 4 (132.7 mg, 0.50 mmol) and 3-biphenylboronic acid (99.2 mg, 0.50 mmol), BF₃·OEt₂ (61.7 µL, 0.50 mmol) with stirring for 24 h. The only *cis*-isomer was observed by ¹H NMR analysis of the crude mixtures. Column chromatography (EtOAc/*n*-hexane=1/2 to 1/1) of the crude residue afforded **7g** (83.3 mg, 43%) as a colorless paste as a single isomer. IR (neat) 3410, 2924, 1670, 1420, 1250, 1179, 1148, 1078, 1026, 962, 908, 864, 760, 733, 696 cm⁻¹; ¹H NMR (CDCl₃) δ 1.57–1.96 (m, 5H), 3.46 (dt, *J*=3.7, 13.4 Hz, 1H), 4.06–4.15 (m, 2H), 5.08 (d, *J*=12.4 Hz, 1H), 5.15 (d, *J*=12.4 Hz, 1H), 5.50 (d, *J*=5.2 Hz, 1H), 7.23–7.53 (m, 13H), 7.67 (s, 1H); ¹³C NMR (CDCl₃) δ 23.1, 27.6, 39.8, 59.3, 67.3, 70.0, 126.2, 127.18, 127.23, 127.3, 127.4, 127.7, 127.9, 128.1, 128.4, 128.7, 128.8, 136.5, 138.4, 141.0, 141.4, 155.9; HRMS (EI) m/z

Anal. Calcd for C₂₅H₂₅NO₃ 387.1834, found [M]⁺ 387.1828.

N-Benzyloxycarbonyl-*cis*-2-(1-naphthyl)piperidin-3-ol (7h): The title compound was prepared according to the general procedure. From 4 (132.7 mg, 0.50 mmol) and 1-naphthaleneboronic acid (86.0 mg, 0.50 mmol), BF₃·OEt₂ (61.7 μL, 0.50 mmol) with stirring for 24 h. The only *cis*-isomer was observed by ¹H NMR analysis of the crude mixtures. Column chromatography (EtOAc/*n*-hexane=1/2 to 1/1) of the crude residue afforded 7h (128.9 mg, 71%) as a colorless paste as a single isomer. IR (neat) 3421, 2949, 2359, 1682, 1418, 1254, 1150, 1126, 1007, 949, 781, 733, 696 cm⁻¹; ¹H NMR (CDCl₃, 50 °C) δ 1.62 (br. s, OH), 1.80–1.98 (m, 3H), 2.05–2.18 (m, 1H), 3.42–3.50 (m, 1H), 4.17 (br. d, *J*=12.2 Hz, 1H), 4.36(br. s, 1H), 4.98 (d, *J*=12.4 Hz, 1H), 5.04 (d, *J*=12.4 Hz, 1H), 6.00 (d, *J*=5.4 Hz, 1H), 6.96 (br. s, 2H), 7.14–7.21 (m, 3H), 7.42–7.52 (m, 3H), 7.61 (d, *J*=7.1 Hz, 1H), 7.79 (d, *J*=8.3 Hz, 1H), 7.86–7.89 (m, 1H), 8.13 (d, *J*=8.8 Hz, 1H); ¹³C NMR (CDCl₃) δ 21.2, 26.4, 39.7, 57.0, 67.1, 68.0, 123.1, 125.0, 125.7, 126.3, 127.3, 127.6, 128.2, 128.2, 128.3, 128.9, 131.5, 133.9, 134.4, 136.3, 155.8; HRMS (EI) m/z Anal. Calcd for C₂₃H₂₃NO₃ 361.1678, found [M]⁺ 361.1687.

N-Benzyloxycarbonyl-*cis*-2-(2-naphthyl)piperidin-3-ol (7i): The title compound was prepared according to the general procedure. From **4** (132.7 mg, 0.50 mmol) and 2-naphthaleneboronic acid (86.0 mg, 0.50 mmol), BF₃·OEt₂ (61.7 μL, 0.50 mmol) with stirring for 24 h. The only *cis*-isomer was observed by ¹H NMR analysis of the crude mixtures. Column chromatography (EtOAc/*n*-hexane=1/2 to 1/1) of the crude residue afforded **7i** (128.1 mg, 71%) as a colorless paste as a single isomer. IR (neat) 3418, 2943, 1665, 1420, 1256, 1148, 1167, 1078, 970, 945, 818, 731, 696, 604 cm⁻¹; ¹H NMR (CDCl₃, 50 °C) δ 1.68–1.98 (m, 5H), 3.16 (dt, *J*=3.1, 13.0 Hz, 1H), 4.11–4.20 (m, 2H), 5.09 (d, *J*=12.4 Hz, 1H), 5.15 (d, *J*=12.4 Hz, 1H), 5.58 (d, *J*=5.4 Hz, 1H), 7.17–7.27 (m, 5H), 7.43–7.48 (m, 2H), 7.52–7.55 (m, 1H), 7.75–7.83 (m, 3H), 7.93 (br. s, 1H); ¹³C NMR (CDCl₃) δ 23.7, 27.5, 39.8, 59.1, 67.3, 70.1, 125.9, 126.0, 126.4, 127.37, 127.39, 127.6, 127.9, 128.0, 128.0, 128.3, 132.5, 133.1, 135.2, 136.4, 156.0; HRMS (EI) m/z Anal. Calcd for C₂₃H₂₃NO₃ 361.1678, found [M]⁺ 361.1669.

N-Benzyloxycarbonyl-*cis*-2-(4-fluorophenyl)piperidin-3-ol (7j): The title compound was prepared according to the general procedure. From **4** (132.7 mg, 0.50 mmol) and 4-fluorophenylboronic acid (70.0 mg, 0.50 mmol), BF₃·OEt₂ (61.7 μL, 0.50 mmol) with stirring for 24 h. The only *cis*-isomer was observed by ¹H NMR analysis of the crude mixtures. Column chromatography (EtOAc/*n*-hexane=1/2 to 1/1) of the crude residue afforded **7j** (62.3 mg, 38%) as a colorless paste as a single isomer. IR (neat) 3421, 2943, 1670, 1508, 1422, 1342, 1251, 1223, 1148, 1080, 1028, 962, 833, 735, 696, 606 cm⁻¹; ¹H NMR (CDCl₃) δ 1.60–1.87 (m, 4H), 2.04 (br. s, OH), 2.96 (dt, *J*=3.2, 13.0 Hz, 1H), 4.02–4.10 (m, 2H), 5.09 (d, *J*=12.4 Hz, 1H), 5.15 (d, *J*=12.4 Hz, 1H), 5.45 (d, *J*=5.6 Hz, 1H), 6.99 (t, *J*=8.8 Hz, 2H), 7.24–7.35 (m, 5H), 7.45 (dd, *J*=5.6, 8.8 Hz, 2H); ¹³C NMR (CDCl₃) δ 23.4, 27.6, 39.6, 58.3, 67.4, 70.1, 115.2 (d, *J*=20.6 Hz), 127.7, 128.0, 128.4, 130.2 (d, *J*=8.2 Hz), 133.4 (d, *J*=3.3 Hz), 136.4, 155.9, 161.9 (d, *J*=244.5 Hz); ¹⁹F NMR (CDCl₃) δ –115.9 (s, 1F); HRMS (EI) m/z Anal. Calcd for C₁₉H₂₀FNO₃ 329.1427, found [M]⁺ 329.1426.

N-Benzyloxycarbonyl-*cis*-2-(4-chlorophenyl)piperidin-3-ol (7k): The title compound was prepared according to the general procedure. From **4** (132.7 mg, 0.50 mmol) and 4-fluorophenylboronic acid (78.2 mg, 0.50 mmol), BF₃·OEt₂ (61.7 µL, 0.50 mmol) with stirring for 24 h. The only *cis*-isomer was observed by ¹H NMR analysis of the crude mixtures. Column chromatography (EtOAc/*n*-hexane=1/2 to 1/1) of the crude residue afforded **7k** (57.5 mg, 33%) as a colorless paste as a single isomer. IR (neat) 3428, 2943, 1670, 1491, 1420, 1342, 1294, 1248, 1182, 1148, 1082, 1012, 962, 829, 765, 731, 696, 608, 580, 567 cm⁻¹; ¹H NMR (CDCl₃) δ 1.58–1.89 (m, 4H), 2.02 (br. s, OH), 2.95 (dt, *J*=3.4, 13.4 Hz, 1H), 4.00–4.12 (m, 2H), 5.09 (d, *J*=12.4 Hz, 1H), 5.15 (d, *J*=12.4 Hz, 1H), 5.45 (d, *J*=5.4 Hz, 1H), 7.24–7.36 (m, 7H), 7.42 (d, *J*=8.6 Hz, 2H); ¹³C NMR (CDCl₃) δ 23.4, 27.6, 39.6, 58.4, 67.4, 70.1, 127.8, 128.0, 128.45, 128.49, 129.9, 133.1, 136.3, 136.4, 155.9; HRMS (EI) m/z Anal. Calcd for C₁₉H₂₀35CINO₃ 345.1132, found [M]⁺ 345.1128.

N-Benzyloxycarbonyl-*cis*-2-(3,4-dimethoxyphenyl)piperidin-3-ol (7m): The title compound was prepared according to the general procedure. From **4** (132.7 mg, 0.50 mmol) and 3,4-dimethoxyphenylboronic acid (91.0 mg, 0.50 mmol), BF₃·OEt₂ (61.7 μL, 0.50 mmol) with stirring for 5 h. The only *cis*-isomer was observed by ¹H NMR analysis of the crude mixtures. Column chromatography (EtOAc/*n*-hexane= 1/1) of the crude residue afforded **7m** (119.4 mg, 64%) as a colorless paste as a single isomer. IR (neat) 3443, 2938, 1670, 1514, 1420, 1344, 1250, 1244, 1082, 1026, 970, 766, 735, 698, 605 cm⁻¹; ¹H NMR (CDCl₃) δ 1.64–1.88 (m, 5H), 3.06 (dt, *J*=3.6, 13.2 Hz, 1H), 3.77 (s, 3H), 3.87 (s, 3H), 4.06–4.10 (m, 2H), 5.08 (d, *J*=12.4 Hz, 1H), 5.15 (d, *J*=12.4 Hz, 1H), 5.39 (d, *J*=5.8 Hz, 1H), 6.82 (d, *J*=8.6 Hz, 1H), 6.96 (d, *J*=2.2 Hz, 1H), 7.03 (dd, *J*=2.2, 8.6 Hz, 1H), 7.25–7.38 (m, 5H); ¹³C NMR (CDCl₃) δ 23.3, 27.7, 39.6, 55.75, 55.81, 58.8, 67.3, 70.0, 110.9, 112.1, 125.7, 127.8, 127.9, 128.4, 130.0, 136.6, 148.2, 148.8, 155.9; HRMS (EI) m/z Anal. Calcd for C₂₁H₂₅NO₅ 371.1733, found [M]⁺ 371.1736.

N-Benzyloxycarbonyl-*cis*-2-[3,4-(methylenedioxy)phenyl]piperidin-3-ol (7n): The title compound was prepared according to the general procedure. From 4 (132.7 mg, 0.50 mmol) and 3,4-(methylenedioxy)phenylboronic acid (83.0 mg, 0.50 mmol), BF₃·OEt₂ (61.7 µL, 0.50 mmol) with stirring for 14 h. The only *cis*-isomer was observed by ¹H NMR analysis of the crude mixtures. Column chromatography (EtOAc/*n*-hexane=1/2 to 1/1) of the crude residue afforded 7n (110.3 mg, 62%) as a pale yellow paste as a single isomer. IR (neat) 3431, 2945, 1670, 1503, 1489, 1420, 1344, 1234, 1120, 1072, 1038, 964, 935, 810, 733, 696 cm⁻¹; ¹H NMR (CDCl₃) δ 1.58–1.87 (m, 5H), 3.05 (dt, *J*=3.9, 13.9 Hz, 1H), 4.00–4.10 (m, 2H), 5.08 (d, *J*=12.4 Hz, 1H), 5.16 (d, *J*=12.4 Hz, 1H), 5.35 (d, *J*=5.6 Hz, 1H), 5.94 (s, 2H), 6.76 (d, *J*=8.0 Hz, 1H), 6.92 (d, *J*=8.0 Hz, 1H), 6.99 (s, 1H), 7.23–7.38 (m, 5H); ¹³C NMR (CDCl₃) δ 23.2, 27.5, 39.6, 58.8, 67.3, 69.9, 101.0, 108.1, 109.0, 121.8, 127.8, 127.9, 128.4, 131.4, 136.5, 146.6, 147.7, 155.9; HRMS (EI) m/z Anal. Calcd for C₂₀H₂₁NO₅ 335.1421, found [M]⁺ 335.1417.

N-Benzyloxycarbonyl-*cis*-2-(*E*)-styrylpiperidin-3-ol (7o): The title compound was prepared according to the general procedure. From 4 (132.7 mg, 0.50 mmol) and (*E*)-styrylboronic acid (71.0 mg, 0.50 mmol), BF₃·OEt₂ (61.7 μ L, 0.50 mmol) with stirring for 14 h. The only *cis*-isomer was observed by ¹H NMR analysis of the crude mixtures. Column chromatography

(EtOAc/*n*-hexane=1/2 to 1/1) of the crude residue afforded **7o** (136.5 mg, 81%) as a colorless paste as a single isomer. IR (neat) 3414, 2941, 1670, 1420, 1342, 1296, 1248, 1159, 1120, 1064, 1010, 964, 876, 784, 733, 694 cm⁻¹; ¹H NMR (CDCl₃, 50 °C) δ 1.49–1.59 (m, 3H), 1.72–1.79 (m, 1H), 1.83–1.93 (m, 1H), 3.05 (br. t, *J*=12.6 Hz, 1H), 3.83 (br. s, 1H), 4.04 (br. d, *J*=13.4 Hz, 1H), 5.09 (br. t, *J*=6.4 Hz, 1H), 5.14 (d, *J*=12.2 Hz, 1H), 5.19 (d, *J*=12.2 Hz, 1H), 6.34 (dd, *J*=6.4, 16.2 Hz, 1H), 6.57 (d, *J*=16.2 Hz, 1H), 7.21–7.37 (m, 10H); ¹³C NMR (CDCl₃) δ 24.1, 28.6, 38.9, 57.6, 67.3, 68.9, 121.8, 126.3, 127.6, 127.7, 127.9, 128.39, 128.41, 133.9, 136.4, 136.5, 155.7; HRMS (EI) m/z Anal. Calcd for C₂₁H₂₃NO₃ 337.1678, found [M]⁺ 337.1680.

N-Benzyloxycarbonyl-*cis*-2-(3-thienyl)piperidin-3-ol (7p): The title compound was prepared according to the general procedure. From **4** (132.7 mg, 0.50 mmol) and 3-thiopheneboronic acid (83.0 mg, 0.50 mmol), BF₃·OEt₂ (61.7 μ L, 0.50 mmol) with stirring for 5 h. The only *cis*-isomer was observed by ¹H NMR analysis of the crude mixtures. Column chromatography (EtOAc/*n*-hexane= 1/2 to 1/1) of the crude residue afforded **7p** (90.0 mg, 57%) as a colorless paste as a single isomer. IR (neat) 3443, 2943, 1667, 1422, 1256, 1078, 1062, 1028, 970, 789, 766, 735, 694, 600 cm⁻¹; ¹H NMR (CDCl₃) δ 1.50–1.90 (m, 4H), 2.31 (br. s, OH), 2.82 (dt, *J*=3.2, 13.2 Hz, 1H), 3.94–4.06 (m, 2H), 5.12 (d, *J*=12.4 Hz, 1H), 5.16 (d, *J*=12.4 Hz, 1H), 5.61 (d, *J*=5.4 Hz, 1H), 7.10 (d, *J*=5.2 Hz, 1H), 7.25–7.39 (m, 7H); ¹³C NMR (CDCl₃) δ 24.1, 28.1, 39.3, 55.9, 67.4, 70.1, 123.2, 125.3, 127.8, 128.0, 128.2, 128.5, 136.5, 137.4, 155.6; HRMS (EI) m/z Anal. Calcd for C₁₇H₁₉NO₃S 317.1086, found [M]⁺ 317.1076.

N-Benzyloxycarbonyl-*cis*-2-(benzo[*b*]thiophen-2yl)piperidin-3-ol (7q): The title compound was prepared according to the general procedure. From **4** (132.7 mg, 0.50 mmol) and benzo[b]thiophene-2-boronic acid (89.1 mg, 0.50 mmol), BF₃·OEt₂ (61.7 µL, 0.50 mmol) with stirring for 24 h. The only *cis*-isomer was observed by ¹H NMR analysis of the crude mixtures. Column chromatography (EtOAc/*n*-hexane=1/2 to 1/1) of the crude residue afforded **7q** (110.4 mg, 60%) as a white solid from dichloromethane/*n*-hexane as a single isomer. mp:148–149 °C; IR (neat) 3410, 2943, 1670, 1418, 1248, 1155, 1069, 1026, 949, 745, 766, 727, 696, 607, 559 cm⁻¹; ¹H NMR (CDCl₃, 50 °C) δ 1.55–1.68 (m, 1H), 1.74–1.96 (m, 4H), 3.07 (dt, *J*=3.4, 13.2 Hz, 1H), 4.03–4.12 (m, 2H), 5.16 (d, *J*=12.4 Hz, 1H), 5.19 (d, *J*=12.4 Hz, 1H), 5.87 (d, *J*=5.4 Hz, 1H), 7.26–7.34 (m, 8H),

7.68 (d, *J*=6.8 Hz, 1H), 7.77 (d, *J*=7.8 Hz, 1H); ¹³C NMR (CDCl₃) δ 23.9, 28.0, 39.5, 56.7, 67.6, 69.8, 121.8, 123.2, 123.8, 124.0, 124.1, 127.8, 128.0, 128.4, 136.2, 139.0, 139.7, 139.9, 155.6; HRMS (EI) m/z Anal. Calcd for C₂₁H₂₁NO₃S 367.1242, found [M]⁺ 367.1256.

N-Benzyloxycarbonyl-*cis*-2-(benzofuran-2yl)piperidin-3-ol (7r): The title compound was prepared according to the general procedure. From **4** (132.7 mg, 0.50 mmol) and 2-benzofuranboronic acid (89.1 mg, 0.50 mmol), BF₃·OEt₂ (61.7 μL, 0.50 mmol) with stirring for 24 h. The only *cis*-isomer was observed by ¹H NMR analysis of the crude mixtures. Column chromatography (EtOAc/*n*-hexane=1/2 to 1/1) of the crude residue afforded **7r** (158.4 mg, 90%) as a pale yellow paste as a single isomer. IR (neat) 3421, 2943, 1670, 1454, 1420, 1252, 1157, 1080, 968, 739, 696, 607 cm⁻¹; ¹H NMR (CDCl₃, 50 °C) δ 1.56–1.71 (m, 1H), 1.80–2.04 (m, 4H), 3.09 (dt, *J*=2.7, 13.2 Hz, 1H), 3.93–4.03 (m, 1H), 4.09 (dd, *J*=3.6, 13.7 Hz, 1H), 5.13 (d, *J*=12.4 Hz, 1H), 5.19 (d, *J*=12.4 Hz, 1H), 5.72 (d, *J*=5.8 Hz, 1H), 6.71 (s, 1H), 7.18–7.33 (m, 7H), 7.43 (d, *J*=8.1 Hz, 1H), 7.51 (d, *J*=7.6 Hz, 1H); ¹³C NMR (CDCl₃) δ 23.9, 29.0, 40.1, 54.3, 67.5, 69.1, 106.9, 111.2, 120.9, 122.8, 124.1, 127.8, 128.0, 128.4, 136.3, 154.0, 154.6, 155.5; HRMS (EI) m/z Anal. Calcd for C₂₁H₂₁NO₄ 351.1471, found [M]⁺ 361.1471.

1-Benxyloxycabonyl-6-oxo-2,3,4,4a,6,12b-hexahydropyrido[2',3',5,6][1,3]oxazino[3,4-a]indol e (**8**): The title compound was prepared according to the general procedure. From **4** (132.7 mg, 0.50 mmol) and 1-(*N*-methoxycarbonyl)indole-2-boronic acid⁷ (109.5 mg, 0.50 mmol), BF₃·OEt₂ (61.7 μL, 0.50 mmol) with stirring for 24 h. The only *cis*-isomer was observed by ¹H NMR analysis of the crude mixtures. Column chromatography (EtOAc/*n*-hexane=1/2 to 1/1) of the crude residue afforded **8** (114.7 mg, 61%) as a colorless paste as a single isomer. IR (neat) 2924, 1746, 1697, 1454, 1421, 1393, 1358, 1342, 1254, 1198, 1152, 1109, 1067, 1036, 964, 814, 745, 733, 696 cm⁻¹; ¹H NMR (CDCl₃, 50 °C) δ 1.53–1.61 (m, 2H), 1.68–1.77 (m, 1H), 2.17–2.19 (m, 1H), 2.93 (dt, *J*=2.2, 13.0 Hz, 1H), 4.10 (br. d, *J*=11.8 Hz, 1H), 4.59 (quin, *J*=6.1 Hz, 1H), 5.23 (d, *J*=12.2 Hz, 1H), 5.27 (d, *J*=12.2 Hz, 1H), 6.01 (d, *J*=6.1 Hz, 1H), 6.32 (s, 1H), 7.27–7.37 (m, 7H), 7.49 (d, *J*=7.6 Hz, 1H), 8.27 (d, *J*=8.1 Hz, 1H); ¹³C NMR (CDCl₃) δ 23.4, 26.4, 38.9, 48.3, 68.0, 75.4, 105.7, 115.2, 120.6, 124.0, 124.8, 128.1, 128.3, 128.6, 129.0, 131.1, 135.6, 135.9, 145.8, 155.4; HRMS (EI) m/z Anal. Calcd for C₂₂H₂₀N₂O₄ 376.1423, found [M]⁺ 376.1411.

Preparation of N-benxyloxycarbonyl-3-fluoro-2-methoxypiperidine (9a)

To a solution of *N*-benzyloxycarbonyl-1,2,3,4-tetrahydropyridine⁶ (10.1 mmol) in MeOH (10 mL) and acetonitrile (10 mL) was added Selectfluor[®] (11.1 mmol) at room temperature. The mixture was stirred for 3 h. The filtrate was diluted with EtOAc (50 mL) and distillated water (50 mL). The layers were separated and the aqueous phase was extracted with EtOAc (2×50 mL). The combined organic layers were washed with brine (50 mL), dried over MgSO₄ and concentrated *in vacuo*. Product was obtained as a colorless oil which was purified by silica gel column chromatography (EtOAc/*n*-hexane=1/10). inseparable mixture of diastereomers (dr = 1/3), 68% yield; IR (neat) 2951, 1697, 1420, 1242, 1161, 1123, 1038, 768, 696 cm⁻¹; ¹H NMR (CDCl₃, 50 °C), δ 1.38–1.58 (m, 1 H), 1.68–2.00 (m, 3H), 2.67–3.02 (m, 1H), 3.23 (br. s, 3H), 3.77–4.09 (m, 1H), 4.32–4.64 (m, 1H), 5.10–5.26 (m, 2H), 5.39 (br. s, 1H), 7.22–7.35 (m, 5H); ¹³C NMR (CDCl₃, 50 °C) rotamers, δ 18.8, 23.4, 24.2 (d, *J*=20.6 H), 24.4 (d), 37.4, 38.0, 54.7, 55.3, 67.2–67.3(m), 67.4–67.5 (m), 82.3, 82.6, 85.8 (d, *J*=171 Hz), 85.9 (d, *J*=171 Hz), 88.7 (d, *J*=187 Hz), 127.8, 128.0, 128.2, 128.4, 128.5, 136.3, 136.6, 156.1; ¹⁹F NMR (CDCl₃) δ –183.8 (br. s, 1/4F), –191.4 (br. s, 3/4F); HRMS (EI) m/z Anal. Calcd for C₁4H₁₈FNO₃ 267.1271, found [M]⁺ 267.1251.

Preparation of N-benxyloxycarbonyl-3-chloro-2-methoxypiperidine (9b)

The chlorination of N-benzyloxycarbonyl-1,2,3,4-tetrahydropyridine⁶ was carried out under the Shono⁸ follows. reported by as condition То a solution of N-benzyloxycarbonyl-1,2,3,4-tetrahydropyridine⁶ (10.1 mmol) in MeOH (20 mL) was added tert-butyl hypochlorite (10.1 mmol) at room temperature. The mixture was stirred for 6 h. The filtrate was diluted with EtOAc (50 mL) and distillated water (50 mL). The layers were separated and the aqueous phase was extracted with EtOAc (2×50 mL). The combined organic layers were washed with brine (50 mL), dried over MgSO₄ and concentrated in vacuo. Product was obtained as a colorless oil which was purified by silica gel column chromatography (EtOAc/n-hexane=1/10). inseparable mixture of diastereomers, 70% yield; IR (neat) 2949, 1701, 1418, 1342, 1304, 1265, 1229, 1153, 1145, 1074, 878, 766, 735, 696, 638, 604 cm⁻¹; ¹H NMR (CDCl₃, 50 °C) δ 1.41–1.59 (m, 1H), 1.70–1.86 (m, 1H), 1.95–2.26 (m, 2H), 2.97 (br. t, J=11.7 Hz, 1H), 3.25 (br. s, 3H), 3.85–4.17 (m, 2H), 5.19 (s, 2H), 5.40 (br. s, 1H), 7.30–7.41 (m, 5H); HRMS (EI) m/z Anal. Calcd for $C_{14}H_{18}CINO_3$ 283.0975, found [M]⁺ 283.0975.

Preparation of N-Benzyloxycarbonyl-3-halo-2-(E)-styrylpiperidine (10a-c)

N-Benzyloxycarbonyl-*trans*-3-fluoro-2-(*E*)-styrylpiperidine (10a): The title compound was prepared according to the general procedure for N-Alkoxycarbonyl-2-arylpiperidin-3-ol. From 9a (133.6 mg, 0.50 mmol) and (*E*)-styrylboronic acid (71.0 mg, 0.50 mmol), BF₃·OEt₂ (61.7 μL, 0.50 mmol) with stirring for 24 h. The diastereomer ratio (major/minor=12/1) was determined by ¹H NMR analysis of the crude mixtures. Column chromatography (EtOAc/*n*-hexane=1/10) of the crude residue afforded 10a (105.1 mg, 62%) as a colorless paste as a single isomer. IR (neat) 2949, 1694, 1422, 1295, 1250, 1197, 1150, 1120, 964, 874, 748, 696 cm⁻¹; ¹H NMR (CDCl₃) δ 1.61–1.71 (m, 1H), 1.74–1.82 (m, 1H), 1.87–1.95 (m, 1H), 1.98–2.06 (m, 1H), 3.03 (br. t, *J*=13.2 Hz, 1H), 4.19 (d, *J*=12.4 Hz, 1H), 4.80 (d, *J*=46.2 Hz, 1H), 5.14 (d, *J*=12.4 Hz, 1H), 5.21 (d, *J*=12.4 Hz, 1H), 5.26 (br. s, 1H), 6.04 (dd, *J*=5.6, 16.1 Hz, 1H), 6.49 (d, *J*=16.1 Hz, 1H), 7.24–7.42 (m, 10H); ¹³C NMR (CDCl₃) δ 18.9, 25.4 (d, *J*=12.4 Hz), 39.5, 57.0 (d, *J*=23.1 Hz), 67.2, 88.6 (d, *J*=176.4 Hz), 122.6 (d, *J*=11.5 Hz), 126.5, 127.8, 128.0, 128.1, 128.5, 128.7, 133.1, 136.5 (d, *J*=59.4 Hz), 156.2; ¹⁹F NMR (CDCl₃) δ –179.1 (s, 1F); HRMS (EI) m/z Anal. Calcd for C₂₁H₂₂FNO₂ 339.1635, found [M]⁺ 339.1635.

N-Benzyloxycarbonyl-*trans*-3-chloro-2-(*E*)-styrylpiperidine (10b): The title compound was prepared according to the general procedure. From **9b** (141.9 mg, 0.50 mmol)⁴ and (*E*)-styrylboronic acid (71.0 mg, 0.50 mmol), BF₃·OEt₂ (61.7 μ L, 0.50 mmol) with stirring for 24 h. The single isomer was observed by ¹H NMR analysis of the crude mixtures. Column chromatography (EtOAc/*n*-hexane=1/10) of the crude residue afforded **10b** (110.3 mg, 62%) as a colorless paste as a single isomer. IR (neat) 2951, 1692, 1420, 1344, 1248, 1213, 1120, 1186, 1144, 1115, 1028, 964, 908, 878, 750, 733, 694 cm⁻¹; ¹H NMR (CDCl₃) δ 1.49 (d, *J*=12.2 Hz, 1H), 1.93–2.17 (m, 3H), 3.03(br. t, *J*=13.0 Hz, 1H), 4.21 (br. d, *J*=12.9 Hz, 1H), 4.38 (br. s, 1H), 5.19 (s. 2H), 5.23 (br. s, 1H), 6.14 (dd,

J=5.5, 16.0 Hz, 1H), 7.24–7.37 (m, 10H); ¹³C NMR (CDCl₃) δ 18.8, 27.5, 39.4, 59.1, 59.5, 67.3, 124.3, 126.5, 127.7, 127.9, 128.1, 128.5, 128.7, 133.3, 136.1, 136.8, 156.1; HRMS (EI) m/z Anal. Calcd for C₂₁H₂₂ClNO₂ 355.1339, found [M]⁺ 355.1345.

N-Benzyloxycarbonyl-*trans*-3-bromo-2-(*E*)-styrylpiperidin-3-ol (10c): The title compound was prepared according to the general procedure. From 9c (164.1 mg, 0.50 mmol)⁴ and (*E*)-styrylboronic acid (71.0 mg, 0.50 mmol), BF₃·OEt₂ (61.7 μ L, 0.50 mmol) with stirring for 24 h. The only *cis*-isomer was observed by ¹H NMR analysis of the crude mixtures. Column chromatography (EtOAc/*n*-hexane=1/10) of the crude residue afforded 10c (144.1 mg, 72%) as a colorless paste as a single isomer. IR (neat) 2949, 1692, 1441, 1420, 1344, 1250, 1204, 1173, 1064, 1142, 1111, 1026, 964, 908, 876 cm⁻¹; ¹H NMR (CDCl₃) δ 1.52–1.59 (m, 1H), 2.01–2.21 (m, 3H), 3.04 (br. t, *J*=13.0 Hz, 1H), 4.23 (br. d, *J*=13.4 Hz, 1H), 4.54 (br. s, 1H), 5.20 (s, 2H), 5.29 (br. s, 1H), 6.18 (dd, *J*=5.6, 16.1 Hz, 1H), 6.50 (d, *J*=16.1 Hz, 1H), 7.26–7.39 (m, 10H); ¹³C NMR (CDCl₃) δ 19.8, 28.1, 39.4, 52.3, 60.0, 67.3, 124.5, 126.5, 127.8, 128.0, 128.2, 128.5, 128.7, 133.3, 136.1, 136.7, 156.0; HRMS (EI) m/z Anal. Calcd for C₂₁H₂₂BrNO₂ 399.0834, found [M]⁺ 399.0874.

Preparation of (±)-L773,060 (1) from 7a

To a stirred solution of sodium hydride (30.7 mg, 60% dispersion in mineral oil, 0.77 mmol) and dry DMF (2 mL) at 0 °C, was added a solution of **7a** (200.0 mg, 0.64 mmol) and 3,5-bis(trifluoromethyl)benzyl bromide (129.0 μ L, 0.70 mmol) in 2 mL of dry DMF. The reaction mixture was heated to 80 °C and stirred for 4 h. The mixture was quenched with water (3 mL) and extracted with EtOAc (10 mL). The combined organic layers were washed with brine (5 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. The crude so obtained was purified by flash chromatography (EtOAc/*n*-hexane=1/5) affording *O*-benzyl ether product as a pale yellow paste (272.8 mg, 79%). IR (neat) 2947, 1694, 1422, 1350, 1275, 1171, 1126, 1096, 955, 885, 737, 700, 683 cm⁻¹; ¹H NMR (CDCl₃) δ 1.58–1.76 (m, 2H), 1.95–2.06 (m, 2H), 2.85 (br. t, *J*=13.0 Hz, 1H), 3.87–3.94 (m, 1H), 4.05 (br. d, *J*=12.7 Hz, 1H), 4.68 (d, *J*=12.7 Hz, 1H), 4.72 (d, *J*=12.7 Hz, 1H), 5.16 (d,

J=12.4 Hz, 1H), 5.22 (d, *J*=12.4 Hz, 1H), 5.80 (br. s, 1H), 7.24–7.38 (m, 8H), 7.55 (br. s, 2H), 7.69 (br. s, 2H), 7.77 (br. s, 1H); ¹³C NMR (CDCl₃) δ 24.0, 25.7, 39.5, 55.7, 67.4, 69.1, 78.5, 121.3 (sep, *J*=4.1 Hz), 123.2 (q, *J*=270.9 Hz), 127.0–127.1 (m), 127.2, 127.7, 128.0, 128.28, 128.34, 128.4, 131.5 (q, *J*=32.9 Hz), 136.6, 137.4, 140.9, 155.8; ¹⁹F NMR (CDCl₃) δ –63.4 (s, 6F); HRMS (EI) m/z Anal. Calcd for C₂₈H₂₅F₆NO₃ 537.1739, found [M]⁺ 537.1729.

The hydrogenolysis of *N*-Cbz was carried out under the condition reported by Sajiki⁹ as follows. A mixture of *O*-benzyl ether compound (200 mg, 0.37 mmol) and 10% Pd/C (10 mg), ammonium acetate (14.3 mg, 0.19 mmol) in MeOH (3 mL) was stirred for 30 min after H₂ substitution from air into the reaction flask by using two vacuum/ H₂ balloon cycles. The reaction mixture was filtered through a Celite pad, and washed with MeOH (5 mL). The filtrate was concentrated and the residue was diluted with water (5mL) and extracted with EtOAc (10 mL). The combined organic layers were washed with brine (5 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. The crude was recrystallized from dichloromethane/*n*-hexane to obtain (±)-L773,060 (1)¹ as a white solid (123.7 mg, 96%). IR (neat) 2935, 1450, 1373, 1275, 1167, 1123, 889, 843, 756, 700, 681 cm⁻¹; ¹H NMR (CDCl₃) δ 1.57–1.76 (m, 2H), 1.95 (br. s, NH), 2.00–2.11 (m, 1H), 2.22 (br. d, *J*=14.2 Hz, 1H), 2.91 (dt, *J*=3.0, 12.7 Hz, 1H), 3.41 (br. d, *J*=12.5 Hz, 1H), 3.73 (br. s, 1H), 4.00 (br. s, 1H) 4.19 (d, *J*=12.7 Hz, 1H), 4.54 (d, *J*=12.7 Hz, 1H), 7.30–7.35 (m, 3H), 7.43–7.45 (m, 2H), 7.48 (br. s, 2H), 7.69 (br. s, 1H); ¹³C NMR (CDCl₃) δ 18.3, 27.1, 45.7, 63.0, 69.7, 75.7, 121.2 (sep, *J*=4.1 Hz), 123.1 (q, *J*=271.7 Hz), 127.0, 127.2–127.3 (m), 127.9, 128.3, 131.2 (q, *J*=32.9 Hz), 138.0, 140.5; ¹⁹F NMR (CDCl₃) δ –63.6 (s, 6F); HRMS (EI) m/z Anal. Calcd for C₂₀H₁₉F₆NO 403.1371, found [M]⁺ 403.1376.

3. References

- For the synthesis of racemic 1, see: T. Harrison, B. J. Williams, C. J. Swain, R. G. Ball, *Bioorg. Med. Chem. Lett.*, 1994, 4, 2545.; For the synthesis of chiral 1, see: G. Kumaraswamy, A. Pitchaiah, *Tetrahedron*, 2011, 67, 2536; N. M. Garrido, M. García, M. R. Sánchez, D. Díez, J. G. Urones, *Synlett*, 2010, 387; S. Prévost, P. Phansavath, M. Haddad, *Tetrahedron: Asymmetry*, 2010, 21, 16; J. L. Bilke, S. P. Moore, P. O'Brien, J. Gilday, *Org. Lett.*, 2009, 11, 1935; F. A. Davis, T. Ramachandar, *Tetrahedron Lett.*, 2008, 49, 870; S. K. Cherian, P. Kumar, *Tetrahedron: Asymmetry*, 2007, 18, 982; T. Oshitari, T. Mandai, *Synlett*, 2006, 3395; Y.-J. Yoon, J.-E. Joo, K.-Y. Lee, Y.-H. Kim, C.-Y. Oh, W.-H. Ham, *Tetrahedron Lett.*, 2005, 46, 739; S. Rao, V. Kandula, P. Kumar, *Tetrahedron: Asymmetry*, 2005, 16, 3579; G. Bhaskar, B. V. Rao, *Tetrahedron Lett.*, 2003, 44, 915; P.-Q. Huang, L.-X. Liu, B.-G. Wei, Y.-P. Ruan, *Org. Lett.*, 2003, 5, 1927; For the synthesis of precursor of 1, see: M.-R. Tsai, B.-F. Chen, C.-C. Cheng, N.-C. Chang, *J. Org. Chem.*, 2005, 70, 1780; N. Kise, K. Ohya, K. Arimoto, Y. Yamashita, Y. Hirano, T. Ono, N. Ueda, *J. Org. Chem.*, 2004, 69, 7710; M. I. Monterde, R. Brieva, V. Gotor, *Tetrahedron: Asymmetry*, 2001, 12, 525; O. Calves, N. Langlois, *Tetrahedron Lett.*, 1999, 40, 7099.
- 2 M. Bartels, J. Zapico, T. Gallagher, *Synlett*, 2004, 2636.
- 3 O. Okitsu, R. Suzuki, S. Kobayashi, J. Org. Chem., 2001, 66, 809.
- 4 A. Rouchaud, J.-C. Braekman, Eur. J. Org. Chem. 2011, 2346.
- 5 M. I. Monterde, R. Brieva, V. Gotor, *Tetrahedron: Asymmetry*, 2001, 12, 525.
- 6 I. R. Morgan, A. Yazici, S. G. Pyne, *Tetrahedron*, 2008, 64, 1409; M. Atobe, N. Yamazaki, C. Kibayashi, J. Org. Chem., 2004, 69, 5595.
- 7 T. Shono, Y. Matsumura, K. Tsubata, Y. Sugihara, S. Yamane, T. Kanazawa, T. Aoki, J. Am. Chem. Soc., 1982, 104, 6697.
- 8 K. Daïri, Y. Yao, M. Faley, S. Tripathy, E. Rioux, X. Billot, D. Rabouin, G. Gonzalez, J.-F. Lavallée, G. Attardo, Org. Process. Res. Dev., 2007, 11, 1051.
- 9 T. Shono, Y. Matsumura, O. Onomura, M. Ogaki, T. Kanazawa, J. Org. Chem., 1986, 52, 536.
- 10 H. Sajiki, Tetrahedron Lett., 1995, 36, 3465.

4. ${}^{1}H$, ${}^{13}C$ and ${}^{19}F$ NMR spectra

