Supporting Information

Direct Measurements of the Saturated Vapor Pressure of Water Confined in Extended Nanospaces using Capillary Evaporation Phenomena

Takehiko Tsukahara¹, Taku Maeda², Kazuma Mawatari²,

Akihide Hibara², and Takehiko Kitamori^{2#}

¹ Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-32, O-Okayama, Meguro-ku, Tokyo 152-8550 Japan,

² Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

[#] CORRESPONDING AUTHOR; Prof. Takehiko Kitamori

Tel: +81-3-5841-7231, Fax: +81-3-5841-6039

E-mail: <u>kitamori@icl.t.u-tokyo.ac.jp</u>

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2012

Width / nm	Depth / nm	Capillary radius r / nm
120	90	103
420	190	262
840	370	514

Table S1 The fabricated sizes and its capillary radius of the extended nanospaces.

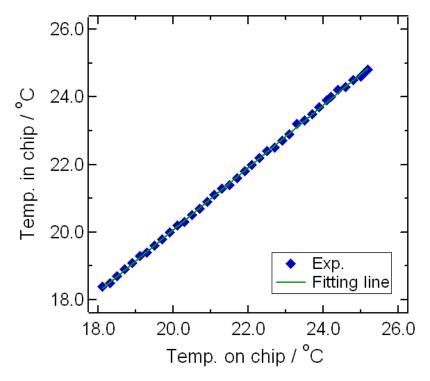
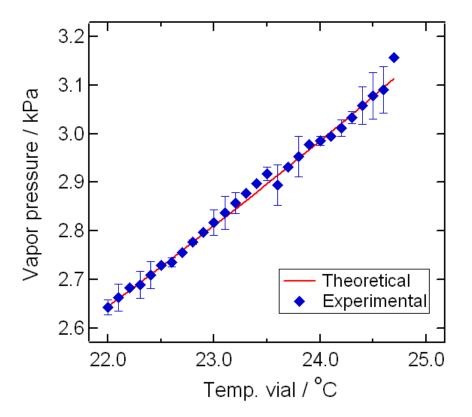



Figure S1 Plots of the experimental in chip temperatures vs. on chip temperatures, and their fitted line.

Figure S2 Plots of the experimental and theoretical vapor pressure values against temperatures. The theoretical values were calculated using Wagner's equation (see Ref. 18.). Error bars represent 2σ uncertainties.