Supporting information

A Highly Active Hydrazine Fuel Cell Catalyst Consisting of Ni-Fe Nanoparticle Alloy pulse reversal plated on Carbon Materials

Haidong Yang, Xing Zhong, Zhengping Dong, Jia Wang, Jun Jin,* and Jiantai Ma*

State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, (P.R. China)

The detailed of pulse reversal plating

An electrochemical cell with a two-electrode configuration was used for the experiments. A copper plate (10mm×10mm×1mm)was used as the cathode and a glass carbon electrode (3mm) which loaded the carbon material used as anode. After plating 23 seconds, wash the electrode with deionized water and then dired the electrode.

Table S1

Nickel iron pulse reversal plating chemistry		
Nickel iron pulse reversal plating chemistry		
Nickel(II) sulfate	250g/l	
Iron(II) sulfate	25.6g/l	
Boric acid	40g/l	
Sodium chloride	25g/l	
Saccharim	2g/l	
Sodium citrate	14.7g/l	

Ascorbic acid	0.5g/l
2-Butyne-1,4-diol	0.6g/l
Sodium dodecylbenzenesulphonate	0.05g/l
Table S2	
Pulse reversal plating conditions	
Nickel iron plating bath conditions	
Temperature	60°C
pH	4.2
Plating time	23s
Average current density	5A/dm ²
Positive pulse time	3ms
Positive duty circle	0.3
Positive average current density	5.55 A/dm^2
Reverse pulse time	3ms
Reverse duty circle	0.1
Reverse average current density	0.55 A/dm^2
Mild agitation.	

Table S3

Inductively coupled plasma spectrometry (ICP) derived compositions of the most active catalysts

Inductively coupled plasma spectrometry (ICP) derived compositions of the most active		
catalysts		
The concentration of	The quality of Iron(II) sulfate	The compositions of the most active
Nickel(II) sulfate (g/L)	(g/L)	catalysts
250	5	Ni _{95.7} Fe _{4.3}
250	10	Ni _{93.1} Fe _{6.9}
250	15	Ni _{92.0} Fe _{8.0}
250	20	Ni _{90.4} Fe _{9.6}
250	25	Ni _{86.1} Fe _{13.9}
250	30	Ni _{80.8} Fe _{19.2}
250	35	Ni _{73.7} Fe _{26.3}
250	40	Ni _{71.2} Fe _{28.8}
250	45	Ni _{67.4} Fe _{32.6}
250	50	Ni _{66.1} Fe _{33.9}
250	55	Ni _{62.6} Fe _{37.4}
250	60	Ni _{59.2} Fe _{40.8}
250	65	Ni _{58.0} Fe _{42.0}
250	70	Ni _{54.9} Fe _{45.1}
250	75	Ni _{54.7} Fe _{45.3}

Figure S1

EDX images of MWCNTs-based and graphene-based Ni-Fe nanoparticles.

Figure 1. EDX images of (a) MWCNT-based Ni-Fe nanoparticles, (b) graphene-based Ni-Fe nanoparticles.