Supplementary Data

Synthesis of bivalent neogalactolipids via modified Staudinger reaction

Ekaterina A. Ivanova, ${ }^{a}$ Mikhail A. Maslov, ${ }^{a_{*}}$ Nina G. Morozova, ${ }^{a}$ Galina A. Serebrennikova ${ }^{a}$ and Vladimir V. Chupin ${ }^{a, b}$
${ }^{a}$ M. V. Lomonosov Moscow State University of Fine Chemical Technologies, 86 Vernadskiy ave. Moscow, Russian Federation. Fax: +7(495)9368901; Tel: +7(495)9368901; E-mail: mamaslov@mail.ru
${ }^{b}$ Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, 16/10 Ul. Miklukho-Maklaya, Moscow,

Russian Federation, Fax: +7(495)3355033; Tel: +7(495)3352733; E-mail: chupin@nmr.ru

General methods

Molecular sieves were activated at $180^{\circ} \mathrm{C}$ under diminished pressure for 2 h . DCM and all amines were purified and dried by distillation from CaH_{2} immediately before the experiment. All solvents for a column chromatography were distilled before using. Thin layer chromatography was performed using pre-coated aluminum plates (Kieselgel $60 \mathrm{~F}_{254}$, Merck), which were visualized with the phosphomolybdic acid - ceric sulfate reagent. Flash column chromatography (FC) was performed on Kieselgel $60\left(40-63 \mu \mathrm{~m}\right.$, Merck). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at $24^{\circ} \mathrm{C}$ in Bruker DPX-300, and Bruker Avance-600 spectrometers in CDCl_{3} as a solvent unless otherwise stated. The signals of $\mathrm{SiMe}_{4}(\delta=0.00 \mathrm{ppm})$ and $\mathrm{CDCl}_{3}(\delta=77.16 \mathrm{ppm})$ were used as internal references. J values are given in Hz. Signals were assigned by 2D proton-proton (COSY) shift correlation spectra. Mass spectra were recorded in a Bruker Ultraflex time-of-flight mass spectrometer using 2,5-dihydroxybenzoic acid as a matrix.

[rac-2,3-Bis(tetradecyloxy)propyl] N-(7-aza-10-carboxy-8-oxodecyl)carbamate (3a)

Succinic anhydride $(0.018 \mathrm{~g}, \quad 0.195 \mathrm{mmol})$ was added to a solution of [rac-2,3bis(tetradecyloxy)propyl] N -(6-aminohexyl)carbamate (2a) (0.111 g, 0.177 mmol) and $\mathrm{Et}_{3} \mathrm{~N}$ $(0.062 \mathrm{~mL}, 0.444 \mathrm{mmol})$ in dry DCM $(10 \mathrm{~mL})$. The mixture was refluxed for 2 h , cooled to room temperature and washed with $3 \% \mathrm{aq} . \mathrm{HCl}(6 \times 5 \mathrm{~mL})$, water to pH 7.0 . The organic extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under diminished pressure. The residue was purified by column chromatography on a silica gel (chloroform - methanol, 25:1) to give compound 3a $(0.087 \mathrm{~g}, 68 \%)$ as a colorless amorphous solid. $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right): 0.87(6 \mathrm{H}, \mathrm{t}, J 6.7$, $\left.2\left(\mathrm{CH}_{2}\right)_{11} \mathrm{CH}_{3}\right), 1.11-1.39\left(48 \mathrm{H}, \mathrm{m}, 2\left(\mathrm{CH}_{2}\right)_{11},\left(\mathrm{CH}_{2}\right)_{2}\right), 1.40-1.64\left(8 \mathrm{H}, \mathrm{m}, 2 \mathrm{NHCH}_{2} \mathrm{CH}_{2}, 2\right.$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.40-2.61\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}(\mathrm{O})\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}(\mathrm{O})\right), 3.04-3.30\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{CH}_{2} \mathrm{NH}\right)$, 3.40-3.54 (6 $\left.\mathrm{H}, \mathrm{m}, 2 \mathrm{OCH}_{2}, \mathrm{CHCH}_{2} \mathrm{O}\right), 3.57-3.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{O}\right), 4.07(1 \mathrm{H}, \mathrm{dd}, J 5.3,11.3)$ and $4.16(1$ H , dd, $\left.J 3.8,11.3, \mathrm{CH}_{2} \mathrm{OC}(\mathrm{O})\right), 4.92-5.1(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 14.21,22.80,26.18$, $26.23,29.29,29.48,29.63,29.76,29.78,29.82,30.14,32.05,39.50,40.80,47.37,51.92,64.65$, $66.72,70.59,70.74,71.93,76.74,77.03,77.16,77.58,156.82 . m / z: 749.540\left(\mathrm{M}^{+}+\mathrm{Na}, 100 \%\right)$.
(Cholest-5-en-3 β-yl) N-(7-aza-10-carboxy-8-oxodecyl)carbamate (3b) was prepared at the same way as compound $\mathbf{3 a}$ from compound $\mathbf{2 b}(0.500 \mathrm{~g}, 0.945 \mathrm{mmol})$, succinic anhydride (0.189 $\mathrm{g}, 1.889 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.329 \mathrm{~mL}, 2.364 \mathrm{mmol})$. After work-up the residue, was purified by column chromatography on a silica gel (chloroform - methanol, 10:1) to give compound 3b $(0.393 \mathrm{~g}, 66 \%)$ as a colorless amorphous solid. $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right): 0.66(3 \mathrm{H}, \mathrm{s}$, C(13)Me Chol), 0.85 ($3 \mathrm{H}, \mathrm{d}, J 6.5$, C(25)Me Chol), 0.86 ($3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{C}(25) \mathrm{Me}$ Chol), 0.89 ($3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{C}(20) \mathrm{Me}$ Chol), 0.99 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}(10) \mathrm{Me}$ Chol), 1.03-1.67 (28 H , m, Chol, $\left.\mathrm{NHCH}_{2}\left(\mathrm{CH}_{2}\right)_{4}\right), 1.72-2.06(6 \mathrm{H}, \mathrm{m}, \mathrm{Chol}), 2.17-2.38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \underline{\mathrm{H}}_{2} \mathrm{Chol}\right), 2.39-2.53(2 \mathrm{H}, \mathrm{m}$,
$\left.\mathrm{CH}_{2} \mathrm{COOH}\right), 2.55-2.73\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right), 3.01-3.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NH}\right)$, $3.18-3.30(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{NH}$), 4.33-4.58 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ Chol), 4.80-4.98 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NH}$), 5.27-5.41 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ Chol), 6.24-6.60 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NH}$). $\delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 176.05,172.76,162.97,156.67,139.89$, $122.62,74.56,56.78,56.31,50.11,42.41,40.57,39.83,39.62,39.41,38.65,37.08,36.65,36.29$, $35.90,31.99,31.10,30.22,29.77,29.25,29.10,28.33,28.25,28.10,26.04,24.39,23.95,22.92$, $22.66,21.14,19.43,18.82,11.96 . m / z: 651.292\left(\mathrm{M}^{+}+\mathrm{Na}, 100 \%\right)$.

8-chloro-1-(2,3,4,6-tetra-O-acetyl- β-d-galactopyranosyloxy)-3,6-dioxaoctane (5)

$\mathrm{HgCN}_{2}(2.247 \mathrm{~g}, 8.896 \mathrm{mmol})$ and $4 \AA$ crushed molecular sieves were added to a solution of compound $4(1.00 \mathrm{~g}, 5.931 \mathrm{mmol})$ in dry $\mathrm{DCM}(15 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$ under stirring. After 15 min , the solution of 2,3,4,6-tetra- O-acetyl- α-D-galactopyranosyl bromide ($3.658 \mathrm{~g}, 8.896 \mathrm{mmol}$) in dry DCM (15 mL) was added dropwise within 1 h . After 4 h at $40^{\circ} \mathrm{C}$, the reaction mixture was cooled to ambient temperature, filtered through Celite 545^{\circledR} pad, and washed with 20% aq. KI. (4 $\times 50 \mathrm{~mL})$, water $(3 \times 30 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under diminished pressure. The residue was purified by column chromatography on a silica gel (toluene - ethyl acetate, 2:1) to give compound $5(2.078 \mathrm{~g}, 75 \%)$ as a yellowish oil. δ_{H} (300 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right): 1.91(3 \mathrm{H}, \mathrm{s}), 1.98(3 \mathrm{H}, \mathrm{s}), 2.99(3 \mathrm{H}, \mathrm{s}), 2.08(3 \mathrm{H}, \mathrm{s}, 4 \mathrm{OCOMe}), 3.50-3.64$ ($\left.8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2}\right), 3.65-3.75\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{OCH}_{2} \mathrm{H}\right), 3.81-3.93(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H} \mathrm{Gal}$, $\left.\mathrm{OCH}_{\mathrm{b}} \mathrm{H}\right), 4.06\left(1 \mathrm{H}\right.$, dd, $\left.J 6.5,11.1,6-\mathrm{H}_{\mathrm{a}} \mathrm{Gal}\right), 4.07\left(1 \mathrm{H}, \mathrm{dd}, J 6.5,11.1,6-\mathrm{H}_{\mathrm{b}} \mathrm{Gal}\right), 4.52(1 \mathrm{H}, \mathrm{d}$, $J 8.0,1-\mathrm{H} \mathrm{Gal}), 4.95$ (1 H , dd, $J 3.4,10.5,3-\mathrm{H}$ Gal), 5.14 ($1 \mathrm{H}, \mathrm{dd}, J 8.0,10.5,2-\mathrm{H} \mathrm{Gal})$, 5.32 (1 H , dd, $J 1.0,3.4,4-\mathrm{H} \mathrm{Gal}) . \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 20.56,20.64,20.66,20.76,42.78,61.25,67.01$, $68.73,69.02,70.33,70.55,70.58,70.61,70.83,101.25,169.46,170.12,170.24,170.36 . \mathrm{m} / \mathrm{z}$: $521.893\left(\mathrm{M}^{+}+\mathrm{Na}, 100 \%\right)$.

8-azido-1-(2,3,4,6-tetra-O-acetyl- $\boldsymbol{\beta}$-D-galactopyranosyloxy)-3,6-dioxaoctane (6)

Sodium azide $(0.542 \mathrm{~g}, 8.329 \mathrm{mmol})$ was added to a solution of compound $5(2.078 \mathrm{~g}, 4.164$ $\mathrm{mmol})$ in dry DMF (100 mL) and stirred for 40 h at $100^{\circ} \mathrm{C}$. The solvent was removed under diminished pressure, the residue was dissolved in $\mathrm{DCM}(70 \mathrm{~mL})$ and washed by $3 \% \mathrm{aq} . \mathrm{HCl}(4 \times$ $20 \mathrm{~mL})$ and water $(3 \times 20 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, the solvent was removed under diminished pressure. Column chromatography on silica gel (toluene ethylacetate, $1: 2$) gave compound $6(1,747 \mathrm{~g}, 83 \%)$ as a yellowish oil. $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right): 1.92(3 \mathrm{H}, \mathrm{s}), 1.98(3 \mathrm{H}, \mathrm{s}), 2.00(3 \mathrm{H}, \mathrm{s}), 2.08(3 \mathrm{H}, \mathrm{s}, 4 \mathrm{OCOMe}), 3.35(2 \mathrm{H}, \mathrm{t}, J 5.0$, $\mathrm{CH}_{2} \mathrm{~N}_{3}$), 3.40-3.64 ($\left.8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2}\right), 3.65-3.75\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{H}\right), 3.81-3.93(2 \mathrm{H}, \mathrm{m}$, $\left.5-\mathrm{H} \mathrm{Gal}, \mathrm{OCH}_{\mathrm{b}} \mathrm{H}\right), 4.06\left(1 \mathrm{H}, \mathrm{dd}, J 6.6,11.1,6-\mathrm{H}_{\mathrm{a}} \mathrm{Gal}\right), 4.11\left(1 \mathrm{H}, \mathrm{dd}, J 6.5,11.1,6-\mathrm{H}_{\mathrm{b}} \mathrm{Gal}\right)$, $4.51(1 \mathrm{H}, \mathrm{d}, J 8.0,1-\mathrm{H}$ Gal $), 4.95(1 \mathrm{H}, \mathrm{dd}, J 3.4,10.5,3-\mathrm{H} \mathrm{Gal}), 5.15(1 \mathrm{H}, \mathrm{dd}, J 8,0,10.5,2-\mathrm{H}$ $\mathrm{Gal}), 5.32(1 \mathrm{H}, \mathrm{dd}, J 1.0,3.4,4-\mathrm{H} \mathrm{Gal}) . \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 20.72,20.81,20.90,50.77,61.39$, $67.14,68.89,69.17,70.12,70.51,70.73,70.78,70.82,71.00,101.45,169.63,170.31,170.41$. m/z: $528.031\left(\mathrm{M}^{+}+\mathrm{Na}, 100 \%\right)$.

8-amino-1-(2,3,4,6-tetra-O-acetyl- $\boldsymbol{\beta}$-d-galactopyranosyloxy)-3,6-dioxaoctane (7)

A catalytic amount of $10 \% \mathrm{Pd} / \mathrm{C}$ was added to a solution of compound $\mathbf{6}(0.721 \mathrm{~g}, 1.978 \mathrm{mmol})$ and ammonium formate ($0.500 \mathrm{~g}, 7.913 \mathrm{mmol}$) in methanol (10 mL) heated to $60^{\circ} \mathrm{C}$. After 15 min the catalyst was filtered off and methanol was removed under diminished pressure. Column chromatography on a silica gel (DCM - methanol, 10:1) gave compound $7(0.308 \mathrm{~g}, 45 \%)$ as a colorless oil. $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$: $1.98(3 \mathrm{H}, \mathrm{s}), 2.05(3 \mathrm{H}, \mathrm{s}), 2.08(3 \mathrm{H}, \mathrm{s}), 2.18(3 \mathrm{H}, \mathrm{s}$, 4 OCOMe), 3.15-3.26 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2} \mathrm{NH}_{2}$), 3.49-3.70 ($8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2}$), 3.73-4.04 (3 $\left.\mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}, 5-\mathrm{H}-\mathrm{Gal}\right), 4.05-4.22(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H} \mathrm{Gal}), 4.55(1 \mathrm{H}, \mathrm{d}, J 7.9,1-\mathrm{H} \mathrm{Gal}), 5.03(1 \mathrm{H}$, dd, $J 3.3,10.5,3-\mathrm{H} \mathrm{Gal}), 5.16(1 \mathrm{H}$, dd, $J 7.9,10.5,2-\mathrm{H} \mathrm{Gal}), 5.38(1 \mathrm{H}, \mathrm{dd}, J 0.8,3.3,4-\mathrm{H}$ Gal), 5.90-6.70 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NH}_{2}$). $\delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 20.74,20.84,20.86,21.03,39.95,61.33,66.83$, $67.11,68.95,69.19,70.10,70.21,70.47,70.81,70.83,101.38,170.14,170.30,170.42,170.63$. $m / z: 480.400\left(\mathrm{M}^{+}+\mathrm{H}, 100 \%\right)$

1,5-Bis $\{N$-[8-(2,3,4,6-tetra-O-acetyl- β-D-galactopyranosyloxy)-3,6-dioxaoctyl] $\}$ - N-tert-butyloxycarbonyl-L-glutaminamid (8)

A solution of Boc-L-glutamic acid ($0.074 \mathrm{~g}, 0.302 \mathrm{mmol}$) and HOBt ($0.090 \mathrm{~g}, 0.664 \mathrm{mmol}$) in anhydrous THF (5 mL) was added under the argon atmosphere to a solution of azide $\mathbf{6}(0.335 \mathrm{~g}$, $0.664 \mathrm{mmol})$ in anhydrous THF $(15 \mathrm{~mL})$. After stirring for 15 min the solution was cooled to 0 C and DIC $(0,104 \mathrm{~mL}, 0.664 \mathrm{mmol})$ was added and the mixture was additionally stirred for 15 min , then tributylphosphine ($0.302 \mathrm{~mL}, 1.208 \mathrm{mmol}$) was added. After 1 h the reaction mixture was heated to $22^{\circ} \mathrm{C}$ and stirred for 48 h . The reaction was quenched with water (30 mL) and after stirring for 20 min the products were extracted with ethyl acetate $(4 \times 70 \mathrm{~mL})$, the obtained organic extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed under diminished pressure. Column chromatography on silica gel $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 60: 1\right)$ gave compound 8 (0.304 $\mathrm{g}, 86 \%)$ as a colorless crystallizing oil. $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right): 1.36\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 1.85-$ $2.00\left(22 \mathrm{H}, \mathrm{m}, 6 \mathrm{OCOMe},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Glu}\right), 2.08(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{OCOMe}), 3.25-3.79\left(24 \mathrm{H}, \mathrm{m}, 2 \mathrm{CH}_{2} \mathrm{NH}\right.$, $\left.2 \mathrm{CH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2}, 2 \mathrm{OCH}_{2}\right), 3.82-3.96(2 \mathrm{H}, \mathrm{m}, 2 \times 5-\mathrm{H} \mathrm{Gal}), 4.02-4.16(5 \mathrm{H}, \mathrm{m}, 2 \times 6-\mathrm{H} \mathrm{Gal}$, CHNH Glu), $4.54(2 \mathrm{H}, \mathrm{d}, J 7.9,2 \times 1-\mathrm{H}$ Gal), $4.95(2 \mathrm{H}, \mathrm{dd}, J 3.4,10.5,2 \times 3-\mathrm{H}$ Gal), $5.15(2$ H, dd, $J 7.9,10.5,2 \times 2-\mathrm{H}$ Gal), $5.33(2 \mathrm{H}, \mathrm{dd}, J 0.8,3.4,2 \times 4-\mathrm{H} \mathrm{Gal}), 5.53-5.67(1 \mathrm{H}, \mathrm{m}, \mathrm{NH})$, 6.50-6.80 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NH}$), 6.95-7.16 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NH}$). $\delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 20.74,20.82,20.93$, $28.44,36.63,37.85,38.73,39.39,53.92,61.36,67.07,68.88,69.72,69.33,69.73,70.23,70.36$, $70.63,70.69,70.74,70.79,70,90,70.94,101.45,161.58,170.32 . m / z: 1192.251\left(\mathrm{M}^{+}+\mathrm{Na}, 100 \%\right)$

1,5-Bis $\{N$-[8-(2,3,4,6-tetra-O-acetyl- β-D-galactopyranosyloxy)-3,6-dioxaoctyl] $\}$-Lglutaminamid trifluoroacetate(9)

Anhydrous TFA ($1.05 \mathrm{~mL}, 12.768 \mathrm{mmol}$) was added to a solution of compound $8(0.304 \mathrm{~g}$, 0.319 mmol) in DCM (5 mL). The reaction mixture was stirred for 2 h at $24^{\circ} \mathrm{C}$, and then DCM was removed under diminished pressure. The residue was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-1 \%\right.$ aq. $\left.\mathrm{CH}_{3} \mathrm{COOH}, 14: 1: 0.02\right)$ to give compound $9(0.212 \mathrm{~g}$, 72%) as a colorless crystallizing oil. $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$: 1.85-2.08 ($28 \mathrm{H}, \mathrm{m}, 8$ OCOMe, $\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Glu}\right)$, 3.25-3.79 ($\left.22 \mathrm{H}, \mathrm{m}, 2 \mathrm{CH}_{2} \mathrm{NH}, 2 \mathrm{C}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2}, 2 \mathrm{OCH}_{2} \mathrm{H}\right)$, 3.77$3.96\left(4 \mathrm{H}, \mathrm{m}, 2 \times 5-\mathrm{H} \mathrm{Gal}, 2 \mathrm{OCH}_{\mathrm{b}} \mathrm{H}\right), 4.00-4.15\left(5 \mathrm{H}, \mathrm{m}, 2 \times 6-\mathrm{H} \mathrm{Gal}, \mathrm{CHNH}_{2}\right), 4.50(2 \mathrm{H}, \mathrm{d}, J$ $7.9,2 \times 1-\mathrm{H}$ Gal), $4.93(2 \mathrm{H}, \mathrm{dd}, J 3.4,10.5,2 \times 3-\mathrm{H} \mathrm{Gal}), 5.06(2 \mathrm{H}, \mathrm{dd}, J 7.9,10.5,2 \times 2-\mathrm{H}$ $\mathrm{Gal}), 5.28(2 \mathrm{H}$, dd, $J 0.8,3.4,2 \times 4-\mathrm{H} \mathrm{Gal}) . \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 12.40,17.58,20.42,20.46$, 20.51, 20.61, 25.04, 29.61, 31.57, 38.96, 42.86, 51.87, 54.79, 61.36, 67.23, 67.61, 68.93, 68.97, $69.92,70.23,70.50,70.56,70.95,101.17,169.94,170.44,170.61,170.80,172.04,174.16$, 174.56. m/z: $1070.380\left(\mathrm{M}^{+}+\mathrm{Na}, 100 \%\right)$

1,5-Bis $\{N$-[8-(2,3,4,6-tetra-O-acetyl- β-d-galactopyranosyloxy)-3,6-dioxaoctyl]- N-[5,12-diaza-1,4,13-trioxo-13-(rac-2,3-di(tetradecyloxy)prop-1-yloxy)tridecyl]-L-glutaminamid (10a)

A solution of compound $9(0.138 \mathrm{~g}, 0.109 \mathrm{mmol})$ and DIPEA ($56 \mu \mathrm{~L}, 0.326 \mathrm{mmol}$) in dry DMF $(4 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$ for 15 min , then a solution of compound $\mathbf{3 a}(0.119 \mathrm{~g}, 0.163 \mathrm{mmol})$ and HBTU ($0.124 \mathrm{~g}, 0.326 \mathrm{mmol}$) in dry DMF (4 mL) was added dropwise within 10 min . After 72 h at $24^{\circ} \mathrm{C}$, DMF was removed under diminished pressure, the residue was dissolved in chloroform (25 mL), washed with 3% aq. $\mathrm{HCl}(2 \times 10 \mathrm{~mL})$, water to pH 7 , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed under diminished pressure. Column chromatography on silica gel $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 40: 1\right)$ gave compound $\mathbf{1 0 a}(0.155 \mathrm{~g}, 80 \%)$ as a colorless crystallizing oil. $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right): 0.86\left(6 \mathrm{H}, \mathrm{t}, J 6.7,2\left(\mathrm{CH}_{2}\right)_{11} \mathrm{CH}_{3}\right)$, 1.14-1.40 ($44 \mathrm{H}, \mathrm{m}, 2$ $\left.\left(\mathrm{CH}_{2}\right)_{11}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.42-1.62\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{11}, 2 \mathrm{NHCH}_{2} \mathrm{CH}_{2}\right), 1.92-2.19(26 \mathrm{H}, \mathrm{m}, 8$ OCOMe, $\mathrm{CH}_{2} \mathrm{Glu}$), 2.20-2.40 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Glu}$), 2.45-2.63 ($4 \mathrm{H}, \mathrm{m}, \mathrm{C}(\mathrm{O})\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}(\mathrm{O})$), 3.10$3.26\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{NHCH}_{2}\right), 3.33-3.49\left(8 \mathrm{H}, \mathrm{m}, 2 \mathrm{CH}_{2} \mathrm{NH}, \mathrm{OCH}_{2}, \mathrm{CHCH}_{2} \mathrm{O}\right.$), 3.50-3.78 ($22 \mathrm{H}, \mathrm{m}, 2$ $\left.\mathrm{CH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{CH}_{3}, \mathrm{CH}\right), 3.88-4.00(2 \mathrm{H}, \mathrm{m}, 2 \times 5-\mathrm{H} \mathrm{Gal}), 4.01-4.21$ (6 $\left.\mathrm{H}, \mathrm{m}, 2 \times 6-\mathrm{H} \mathrm{Gal}, \mathrm{CHCH}_{2} \mathrm{OC}(\mathrm{O})\right), 4.30-4.43(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 4.54(1 \mathrm{H}, \mathrm{d}, J 7.9,1-\mathrm{H}$ Gal), 4.57 ($1 \mathrm{H}, \mathrm{d}, J 7.9,1-\mathrm{H} \mathrm{Gal}), 4.81-4.94(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 5.02(2 \mathrm{H}, \mathrm{dd}, J 3.4,10.5,2 \times 3-\mathrm{H} \mathrm{Gal}), 5.17$ (2

H, dd, $J 7.9,10.5,2 \times 2-\mathrm{H} \mathrm{Gal}), 5.37(2 \mathrm{H}, \mathrm{dd}, J 0.8,3.4,2 \times 4-\mathrm{H} \mathrm{Gal}), 6.05-6.16(1 \mathrm{H}, \mathrm{m}, \mathrm{NH})$, 6.67-6.78 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NH}$). $\delta_{\mathrm{H}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 14.22,20.70,20.76,20.79,20.90,22.79,26.15$, 26.21, 26.34, 26.47, 29.50, 29.61, 29.73, 29.76, 29.80, 29.93, 30.13, 31.46, 31.50, 31.58, 31.62, $31.63,31.66,32.02,32.55,39.23,39.35,39.46,40.91,52.95,53.02,53.04,61.36,61.39,64.32$, $67.17,67.20,68.97,69.24,69.25,69.65,69.81,70.25,70.29,70.32,70.57,70.65,70.71,70.75$, $70.78,70.80,70.97,70.98,71.89,77.36,101.45,101.46,125.40,128.33,129.14,156.61$, $169.71,169.72,170.27,170.28,170.35,170.37,170.55,170.58,171.48,171.54,171.56,172.15$, 172.46, 172.53, 173.21. m/z: $1801.946\left(\mathrm{M}^{+}+\mathrm{Na}, 100 \%\right)$

1,5-Bis $\{N$-[8-(2,3,4,6-tetra-O-acetyl- β-D-galactopyranosyloxy)-3,6-dioxaoctyl]- N-[5,12-

 diaza-13-(cholest-5-ene-3 β-yloxy)-1,4,13-trioxotridecyl]-L-glutaminamid (10b) was prepared at the same way as compound $\mathbf{1 0 a}$ from compound $9(0.100 \mathrm{~g}, 0.088 \mathrm{mmol})$, DIPEA ($46 \mu \mathrm{~L}, 0.266 \mathrm{mmol}$), compound 3b $(0.084 \mathrm{~g}, 0.133 \mathrm{mmol})$ and $\mathrm{HBTU}(0.101 \mathrm{~g}, 0.266 \mathrm{mmol})$. Column chromatography on silica gel $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 30: 1\right)$ gave compound 10a $(0.101 \mathrm{~g}$, $72 \%)$ as a colorless crystallizing oil. $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$: $0.61(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(13) \mathrm{Me}$ Chol), 0.78 ($3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{C}(25) \mathrm{Me}$ Chol), 0.81 ($3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{C}(25) \mathrm{Me}$ Chol), 0.84 ($3 \mathrm{H}, \mathrm{d}, J 6.5$, $\mathrm{C}(20) \mathrm{Me}$ Chol $), 0.89-1.60\left(35 \mathrm{H}, \mathrm{m}, 27 \mathrm{H}\right.$ Chol, $\left.\left(\mathrm{CH}_{2}\right)_{4}\right), 1.62-1.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Glu}\right), 1.89-2.08$ ($24 \mathrm{H}, \mathrm{m}, 8 \mathrm{OCOMe}$), 2.12-2.36 ($\left.5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Glu}, \mathrm{Chol}\right), 2.40-2.48\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}(\mathrm{O})\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}(\mathrm{O})\right.$), 2.97-3.23 ($4 \mathrm{H}, \mathrm{m}, 2 \mathrm{CH}_{2} \mathrm{NH}$), 3.25-3.43 ($4 \mathrm{H}, \mathrm{m}, 2 \mathrm{CH}_{2} \mathrm{NH}$), 3.43-3.61 ($16 \mathrm{H}, \mathrm{m}, 2$ $\left.\mathrm{CH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2}\right), 3.62-3.74\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{OCH}_{\mathrm{a}} \mathrm{H}\right), 3.80-3.96\left(4 \mathrm{H}, \mathrm{m}, 2 \times 5-\mathrm{H} \mathrm{Gal}, 2 \mathrm{OCH}_{\mathrm{b}} \mathrm{H}\right)$, 3.99-4.18 ($5 \mathrm{H}, \mathrm{m}, 2 \times 6$ - 2 Gal, CHNH Glu), 4.24-4.45 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ Chol, NH), $4.48(1 \mathrm{H}, \mathrm{d}, J$ 7.9, 1-H Gal), $4.52(1 \mathrm{H}, \mathrm{d}, J 7.9,1-\mathrm{H} \mathrm{Gal}), 4.68-4.81(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 4.97(2 \mathrm{H}, \mathrm{dd}, J 3.4,10.5,2$ $\times 3-\mathrm{H} \mathrm{Gal}), 5.12(2 \mathrm{H}, \mathrm{dd}, J 7.9,10.5,2 \times 2-\mathrm{H} \mathrm{Gal}), 5.32(3 \mathrm{H}, \mathrm{m}, 2 \times 4-\mathrm{H}$ Gal, $6-\mathrm{H}$ Chol $), 6.05-$ $6.15(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 6.60-6.70(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}) . \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 11.87,18.72,19.34,20.61$, 20.68, 20.70, 20.81, 21.05, 22.57, 22.83, 23.84, 24.30, 26.21, 26.34, 28.01, 28.23, 29.39, 29.70, $29.87,31.43,31.59,31.89,32.48,35.80,36.19,36.58,37.01,38.61,39.34,39.52,39.75,40.63$, $42.32,50.02,52.95,56.15,56.70,61.30,67.11,68.87,69.15,69.53,69.70,70.16,70.24,70.68$, $70.88,74.23,77.27,101.36,122.48,139.87,169.60,170.17,170.27,170.44,171.44,172.07$, 172.43, 173.08. m/z: $1702.798\left(\mathrm{M}^{+}+\mathrm{Na}, 100 \%\right)$
1,5-Bis-[N-[8-(β-D-galactopiranosyloxy)-3,6-dioxaoctyl]- N-[5,12-diaza-1,4,13-trioxo-13-(rac-2,3-di(tetradecyloxy)prop-1-yloxy)tridecyl]-L-glutaminamid (1a)

A 0.04 M solution of MeONa in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ was added to a solution of compound $\mathbf{1 0 a}$ (99 $\mathrm{mg}, 0.056 \mathrm{mmol}$) in $\mathrm{MeOH}(5 \mathrm{~mL})$. After 1 h the reaction mixture was neutralized with $3 \% \mathrm{aq}$. HCL $(40 \mu \mathrm{l})$ and the solvent was removed under diminished pressure. Column chromatography on silica gel $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-1 \%\right.$ aq. $\left.\mathrm{CH}_{3} \mathrm{COOH}, 3: 1: 0.08\right)$ gave compound $\mathbf{1 a}(73 \mathrm{mg}, 92 \%)$ as a white amorphous solid. $\delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD} 1: 1 ; \mathrm{Me}_{4} \mathrm{Si}\right): 0.80(6 \mathrm{H}, \mathrm{t}, J 7.1,2$ $\left.\left(\mathrm{CH}_{2}\right)_{11} \mathrm{CH}_{3}\right), 1.12-1.32\left(48 \mathrm{H}, \mathrm{m}, 2\left(\mathrm{CH}_{2}\right)_{11}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.36-1.51\left(8 \mathrm{H}, \mathrm{m}, 2 \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{11}, 2\right.$ $\left.\mathrm{NHCH}_{2} \mathrm{CH}_{2}\right), 1.80-1.88(1 \mathrm{H}, \mathrm{m})$ and $2.00-2.08\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Glu}\right), 2.23\left(2 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{CH}_{2} \mathrm{Glu}\right)$, 2.39-2.51 (4 H, m, C(O)(CH2 $\left.)_{2} \mathrm{C}(\mathrm{O})\right), 3.01\left(2 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{2} \mathrm{NHCO}\right), 3.07(2 \mathrm{H}, \mathrm{t}, J 7.2$, $\left.\mathrm{CH}_{2} \mathrm{NHCO}\right), 3.29-3.75\left(39 \mathrm{H}, \mathrm{m}, 2 \mathrm{CH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2}, 2 \times 2-\mathrm{H} \mathrm{Gal}, 2 \times 3-\mathrm{H} \mathrm{Gal}, 2 \times 5-\mathrm{H} \mathrm{Gal}, 2\right.$ $\left.\times 6-\mathrm{H} \mathrm{Gal}, 2 \mathrm{OCH}_{\mathrm{a}} \mathrm{H}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}, 2 \mathrm{CH}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{C} \underline{\mathrm{H}} \mathrm{Gro}\right), 3.80-3.85(2 \mathrm{H}, \mathrm{m}, 2 \times 4-\mathrm{H} \mathrm{Gal})$, $3.94-4.00\left(3 \mathrm{H}, \mathrm{m}, 2 \mathrm{OCH}_{\mathrm{b}} \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}\right.$ Gro $), 4.03\left(1 \mathrm{H}, \mathrm{dd}, J 11.4, J 4.5, \mathrm{OCH}_{b} \mathrm{H}\right.$ Gro $), 4.22(1 \mathrm{H}$, d, $J 7.7,1-\mathrm{H} \mathrm{Gal}), 4.23\left(1 \mathrm{H}, \mathrm{d}, J 7.7,1-\mathrm{H}\right.$ Gal), $4.25\left(1 \mathrm{H}, \mathrm{dd}, J 9.2, J 5.0\right.$, CHNH Glu). δ_{c} (75 $\mathrm{MHz} ; \mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD} 1: 1$): 14.22, 18.05, 23.16, 23.78, 26.55, 26.62, 26.94, 27.10, 28.47, 29.64, $29.71,29.78,29.87,29.99,30.16,30.19,30.37,30.48,31.45,31.62,31.73,32.45,39.77,39.91$, $41.22,53.81,61.84,64.51,68.82,69.64,69.67,70.33,70.42,70.56,70.60,70.66,70.93,71.14$, $71.78,71.85,72.26,74.07,75.87,75.89,78.71,103.85,103.91,157.97,173.73,173.76,174.41$, 174.71, 179.89. m/z: $1465.085\left(\mathrm{M}^{+}+\mathrm{Na}, 100 \%\right)$.

1,5-Bis-[N-[8-(β-D-galactopiranosyloxy)-3.6-dioxaoctyl]- N-[5,12-diaza-13-(cholest-5-ene-3ß-yloxy)-1,4,13-trioxotridecyl]-L-glutaminamid (1b) was prepared at the same way as
compound 1a from 10b ($86 \mathrm{mg}, 0.051 \mathrm{mmol}$). Column chromatography on silica gel $\left(\mathrm{CHCl}_{3}-\right.$ $\left.\mathrm{MeOH}-\mathrm{CH}_{3} \mathrm{COOH}_{\mathrm{aq}}(1 \%), 1: 8: 0.08\right)$ gave compound $\mathbf{1 b}$ ($60 \mathrm{mg}, 87 \%$). $\delta_{\mathrm{H}}(600 \mathrm{MHz}$; $\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD} 1: 1 ; \mathrm{Me}_{4} \mathrm{Si}$): 0.61 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}(13) \mathrm{Me}$ Chol), 0.78 ($3 \mathrm{H}, \mathrm{d}, J 6.6,2 \mathrm{C}(25) \mathrm{Me}$ Chol), 0.84 ($3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{C}(20) \mathrm{Me}$ Chol), 0.92 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}(10) \mathrm{Me}$ Chol), $0.85-1.56$ (34 H , m, Chol, $\left.\left(\mathrm{CH}_{2}\right)_{4}\right)$, 1.69-1.81 ($3 \mathrm{H}, \mathrm{m}$, Chol), 1.82-1.92 ($1 \mathrm{H}, \mathrm{m}$) and 1.98-2.08 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Glu}\right)$, 2.15$2.30\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Glu}, 4-\mathrm{CH}_{2} \mathrm{Chol}\right), 2.37-2.51\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}(\mathrm{O})\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}(\mathrm{O})\right), 3.01(2 \mathrm{H}, \mathrm{t}, J 7.2$, $\left.\mathrm{CH}_{2} \mathrm{NHCO}\right) 3.06\left(2 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{2} \mathrm{NHCO}\right), 3.28-3.40\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.41-3.79$ (29 $\mathrm{H}, \mathrm{m}, 2 \mathrm{CH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2}, 2 \times 2-\mathrm{H} \mathrm{Gal}, 2 \times 3-\mathrm{H} \mathrm{Gal}, 2 \times 5-\mathrm{H} \mathrm{Gal}, 2 \times 6-\mathrm{H} \mathrm{Gal}, 2 \mathrm{OCH}_{2} \mathrm{H}, 3-\mathrm{H}$ Chol), 3.82-3.87 ($2 \mathrm{H}, \mathrm{m}, 2 \times 4-\mathrm{H} \mathrm{Gal}$), 3.97-4.04 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{OCH}_{\mathrm{b}} \mathrm{H}$), $4.22(1 \mathrm{H}, \mathrm{d}, J 7.6,1-\mathrm{H}$ Gal), 4.23 ($1 \mathrm{H}, \mathrm{d}, J 7.6,1-\mathrm{H} \mathrm{Gal}), 4.26(1 \mathrm{H}, \mathrm{dd}, J 9.2, J 5.0$, CHNH Glu), $5.26-5.32(1 \mathrm{H}, \mathrm{m}, 6-$ H Chol). $\delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD} 1: 1\right): 11.49,18.34,18.94,20.79,22.12,22.38,23.47$, 23.55, 24.00, 26.09, 26.25, 27.73, 27.93, 28.86, 29.43, 30.79, 31.01, 31.65, 32.01, 35.55, 35.93, $36.32,36.77$, $38.33,38.94,38.99,39.12,39.26,39.52,40.29,42.07,47.58,47.86,48.15,48.43$, $48.72,49.00,49.28,49.87,52.99,55.92$, 56.50, 60.96, 61.02, 67.99, 68.72, 68.79, 69.44, 69.55, $69.71,69.77,69.81,69.87,69.97,70.90,71.00,73.11,74.17,102.95,103.02,122.22,139.62$, $156.80,172.85,163.46,173.84,179.18 . \mathrm{m} / \mathrm{z}: 1366.690\left(\mathrm{M}^{+}+\mathrm{Na}, 100 \%\right)$.

Lectin-induced agglutination of galactosylated liposomes

Cationic liposomes ($100 \mu \mathrm{~L}, 1 \mathrm{mM}$ of phospholipid) were diluted in 1.8 ml of 150 mM NaCl followed by incubation with $100 \mu \mathrm{~L}$ of $\mathrm{RCA}_{120}(1 \mathrm{mg} / \mathrm{mL})$. After rapid mixing the agglutination of the liposomes was estimated at room temperature by the time dependent increase in turbidity, as measured by the absorbance at 450 nm with Helios Alpha spectrometer (Thermo Spectronic).

compound 10b

