Electronic Supporting information (ESI)

Fe₂O₃ nanoparticles coated on ferrocene-encapsulated single-walled carbon nanotubes as stable anode materials for long-term cycles

Jiaxin Li, Yi Zhao, Yunhai Ding and Lunhui Guan*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the

Structure of Matter, Chinese Academy of Sciences, YangQiao West Road 155#,

Fuzhou, Fujian 350002, P.R. China.

S1. Raman spectra of the SWCNTs and Fc@SWCNTs

Fig. S1. Raman spectra of the SWCNTs and Fc@SWCNTs with the excitation wavelength of 785 nm. The insets show the enlarged RBM and G regions. After doping with Fc, the charge transfer for SWCNT carrier is enhanced obviously, which

result is consistent with the Raman test shown in the following Fig. 2. Both RBM and G bands shifted slightly because of the charge transfer between Fc and host SWCNTs. The G band of the Fc@SWCNTs has a higher intensity, and the shoulder of G band (G' band) is broaden (see the inset in Fig. S1), indicating that the intercalation of Fc molecules into SWCNTs leads to n-doping. These would provide another proof to explain the improvement of conductivity for SWCNT carrier caused by Fc dopant.

S2. Cycling performance of Fe₂O₃/SWCNTs and Fe₂O₃ NPs

Fig. S2. Cycling performance of $Fe_2O_3/SWCNT$ and Fe_2O_3 electrodes as a function of cycle number. Without carrier, Fe_2O_3 NP electrode sharply deteriorated due to the quick aggregation of NPs and the disconnection of the material. The capacity of Fe_2O_3 NPs dropped rapidly to 20 mAh g⁻¹ only after 10 cycles. The capacity for $Fe_2O_3/SWCNTs$ (measured at 100 mA g⁻¹) was about 400 mAh g⁻¹ after 80 cycles,

which is notably lower than that of $Fe_2O_3/Fc@SWCNTs$ (960 mAhg⁻¹). The enhanced performance can be surely obtained by filling ferrocene.

S3. Electrochemical impedance spectra for Fe₂O₃/Fc@SWCNTs

Fig. S3. The electrochemical impedance spectra for $Fe_2O_3/Fc@SWCNT$ electrode before and after electrochemical test. Conductivity for this electrode remarkably enhanced after test, resulting in the improvement of electrochemical performance.