Electronic Supplementary Information

Monosubstituted dually cationic cyclodextrins for stronger chiral recognition

Yun Dai, Jie Zhou, Shuye Wang, Enwei Zhu, Jiefeng Hai, Yun Liu, Jian Tang^{*}, Weihua Tang^{*}

1. Instrumentation	S2
2. Synthesis of compound 3, 4, 8a and 9a	S2
3 . ¹ H and ¹³ C NMR spectra of 5 a	S5
4 . ¹ H and ¹³ C NMR spectra of 5b	S6
5 . ¹ H and ¹³ C NMR spectra of 5 c	
6 . ¹ H and ¹³ C NMR spectra of 5d	S8
7. ¹ H and ¹³ C NMR spectra of $6a$	S9
8. ¹ H and ¹³ C NMR spectra of 6b	S10
9. ¹ H and ¹³ C NMR spectra of 6c	S11
10 . ¹ H and ¹³ C NMR spectra of 6d	S12
11. ¹ H and ¹³ C NMR spectra of 7a	S13
12 . ¹ H and ¹³ C NMR spectra of 7b	S14
13 . ¹ H and ¹³ C NMR spectra of 7c	S15
14. ¹ H and ¹³ C NMR spectra of $7d$	S16
15. ESI-MS spectra of 5a , 5b , 5c , 5d , 6a , 6b , 6c , 6d , 7a , 7b , 7c , 7d	S17

1. Instrumentation

All ¹HNMR spectra and mono-dimensional ¹HNMR spectra (TOCSY) were recorded on a Bruker AVANCE 500 MHz (Bio-Spin Corporation, Europe) spectrometer in DMSO-d₆. Data is expressed in parts per million (ppm) downfield shift from tetramethylsilane as internal reference and are reported as position (in ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constant (*J* in Hz) and integration (number of protons). ¹³CNMR spectra were recorded on a Bruker AVANCE 500 MHz spectrometer in CDCl₃ or DMSO-d₆ or D₂O with complete proton decoupling. Data is expressed in parts per million (ppm) shift relative to DMSO-d₆ (39.51 ppm) is reported as position (δ). Melting points were recorded on Beijing TECH brand melting point apparatus and are uncorrected. Electrospray Ionization spectra were acquired on a Finniga/AM TSQ Qurntum (Thermal, USA) time of flight mass spectrometer. Samples are presented in Methanol (or your solvent here) as a 100 µl loop injection by manual operation. Elemental analysis was carried out on a Perkin-Elmer 2400 CHN analyzer.

Beckman P/ACE MDQ CE unit (Fullerton, CA, USA) was used for all CE separations. 50 μ m ID, 375 μ m OD fused silica capillary was used with a total length of 59.2 cm (49 cm to the detector). Detection of analytes was carried out simultaneously at 214 nm, 254 nm and 280nm by using variable-wavelength PDA (Photodiode Array, 190-300 nm) detector. The electrosmotic flow (EOF) was measured with methanol as neutral marker. Samples were introduced hydrodynamically into the capillaryat 0.5 psi for 5 s. All experiments were performed under normal polarity with 15 kV applied voltage.

2. Synthesis of compound 3, 4, 8a and 9a.

N-(2-Bromoethyl)phthalimide (3a). Towards a solution of 1,2-dibromoethane (7.66 mL, 64.8 mmol) in acetone (20 mL) was added with **2** (4 g, 21.6 mmol) under N₂. The reaction mixture was stirred at 60°C for 12 h under reflux. After cooling down to room temperature, KBr precipitate was removed via filtration. The filtrate was concentrated to ~10 mL. Recrystallization from ethanol afforded the title

compound **3a** (4.61 g, 84%) as a white solid: ¹H NMR (500 MHz, CDCl₃): δ = 7.89 (m, 2H, =CH_{ortho}), 7.77 (m, 2H, =CH_{meta}), 4.12 (t, 2H, *J* = 6.6 Hz, -CH_{2-N-imine}), 3.63 (t, 2H, *J* = 6.6 Hz, -CH_{2-bromo}).

N-(3-bromopropyl)phthalimide (3b). White solid (yield 89%): ¹H NMR (500 MHz, CDCl₃): δ = 7.88 (m, 2H, =CH_{ortho}), 7.77 (m, 2H, =CH_{meta}), 3.85 (t, 2H, *J* = 6.6 Hz, -CH_{2-imine}), 3.43 (t, 2H, *J* = 6.6 Hz, -CH_{2-bromo}), 2.27 (m, 2H, *J* = 6.9 Hz, *J* = 6.6 Hz, -CH₂).

N-(4-bromobutyl)phthalimide (3c). White solid (yield 83%): ¹H NMR (500 MHz, CDCl₃): δ = 7.86 (m, 2H, =CH_{ortho}), 7.73 (m, 2H, =CH_{meta}), 3.73 (t, 2H, *J* = 6.6 Hz, -CH_{2-imine}), 3.45 (t, 2H, *J* = 6.6 Hz, -CH_{2-bromo}), 1.89 (m, 4H, -CH₂).

N-(6-bromohexyl)phthalimide (**3d**). White solid (yield 91%): ¹H NMR (500 MHz, CDCl₃): δ = 7.85 (m, 2H, =CH_{ortho}), 7.73 (m, 2H, =CH_{meta}), 3.69 (t, 2H, *J* = 6.6 Hz, -CH_{2-imine}), 3.40 (t, 2H, *J* = 6.6 Hz, -CH_{2-bromo}), 1.86 (m, 2H, -CH₂), 1.67 (m, 2H, -CH₂), 1.44 (m, 2H, -CH₂), 1.34 (m, 2H, -CH₂).

*N-[2-(1H-Imidazolyl)ethyl]phthalimide (4a).*¹³ To a suspension of sodium hydride (1.21 g, 50.46 mmol, 1.24 g of 97% mineral oil dispersion) in petroleum ether (20 mL) was bubbled with N₂ to remove the mineral oil. Freshly distilled DMF (25 mL) was added with stirring to dissolve the cleaned sodium hydride at 0°C over 35 min. To the above solution was gradually added with a solution of imidazole (2.63 g) in DMF (40 mL) over 1 h. A solution of **3a** (12 g, 42.53 mmol) in DMF (160 mL) was then added dropwise. The reaction mixture was refluxed at 100°C for 8 h. After removal of DMF, the syrupy residue was dissolved in dichloromethane, and washed with water at least three times. A further flush chromatography over silica gel with methanol/ethyl acetate (1/1, v/v) afforded the title compound **4a** (4.72 g, 46 %) as a white solid: m.p. 156°C; ¹H NMR (500 MHz, CDCl₃): δ = 7.86 (m, 2H, =CH_{ortho}), 7.76 (m, 2H, =CH_{meta}), 7.46 (s, 1H, =CH-_{2im}), 7.07 (s, 1H, =CH-_{4im}), 7.00 (s, 1H, =CH-_{5im}), 4.33 (t, 2H, *J* = 6.6 Hz, -CH_{2-N-imin}).

N-[3-(1H-imidazolyl)propyl]phthalimide (4b). White solid (yield 37%): m.p. 104°C; ¹H NMR (500 MHz, CDCl₃): δ = 7.85 (m, 2H, =CH_{ortho}), 7.75 (m, 2H, =CH_{meta}), 7.57 (s, 1H, =CH-_{2im}), 7.04 (s, 1H, =CH-_{4im}), 6.99 (s, 1H, =CH-_{5im}), 4.01 (t, 2H, *J* = 6.9 Hz, -CH_{2-N-im}), 3.73 (t, 2H, J = 6.9 Hz, -CH_{2-N-imine}), 2.18 (m, 2H, -CH₂).

N-[4-(1H-imidazolyl)butyl]phthalimide (4c). White solid (yield 43%): m.p. 84°C; ¹H NMR (500 MHz, CDCl₃): δ = 7.83 (m, 2H, =CH_{ortho}), 7.72 (m, 2H, =CH_{meta}), 7.48 (s, 1H, =CH-_{2im}), 7.03 (s, 1H, =CH-_{4im}), 6.91 (s, 1H, =CH-_{5im}), 3.99 (t, 2H, *J* = 6.9 Hz, -CH_{2-N-im}), 3.71 (t, 2H, *J* = 6.9 Hz, -CH_{2-N-imine}), 1.84 (m, 2H, -CH₂), 1.68 (m, 2H, -CH₂).

N-*[6*-(*1H-imidazolyl*)*hexyl]phthalimide* (*4d*). White solid (yield 37%): m.p. 57°C; ¹H NMR (500 MHz, CDCl₃): δ= 7.83 (m, 2H, =CH_{ortho}), 7.73 (m, 2H, =CH_{meta}), 7.45 (s, 1H, =CH-_{2im}), 7.03 (s, 1H, =CH-_{4im}), 6.89 (s, 1H, =CH-_{5im}), 3.92 (t, 2H, *J* = 4.2 Hz, -CH_{2-*N*-im}), 3.67 (t, 2H, *J* = 4.2 Hz, -CH_{2-imine}), 1.78 (m, 2H, -CH₂), 1.68 (m, 2H, -CH₂), 1.37 (m, 2H, -CH₂).

(*1H-imidazol-1-yl*)*ethylamine* (**8a**). A mixture solution of **4a** (0.17 g, 0.7 mmol), ethanol (10 mL), and hydrazine hydrate (0.039g, 0.77 mmol) was stirred at 80°C for 12 h. After cooling down to room temperature, hydrochloric acid (7.7 mmol) was added before refluxing the solution for another 5 h. Removal of the insoluble solid by filtration, the filtrate was concentrated and added with sodium hydroxide (7.7 mmol, 1 M) solution. Extracted with dichloromethane (3×15 mL), the collected solution was dried with MgSO₄ and evaporated to afford title compound as a colorless oil: ¹HNMR (500 MHz, DMSO-d₆) δ 7.59 (s, 1H, =CH-_{2im}), 7.14 (s, 1H, =CH-_{4im}), 6.86 (s, 1H, =CH-_{5im}), 3.93 (t, 2H, -CH_{2-N-im}), 2.51 (t, 2H, *J* = 6.9 Hz, -CH_{2-N-amine}).

Mono-6^A-[2-(3-imidazolethyl)-ammonium]-6^A-deoxy-β-cyclodextrin chloride (**10a**). Similar synthetic approach as for **5** and **7** afforded the title compound as a white solid (82%): ¹H NMR (300 MHz, DMSO-_{d6}) δ 8.67 (s, 1H, =CH-2im), 8.28-8.24 (br, 2H, -NH₂), 7.60 (s, 1H, =CH-4im), 7.10 (s, 1H, =CH-5im), 8.02 (s, 2H), 7.94(s, 2H), 5.80-5.70 (m, 14H, OH-2 and OH-3), 4.96 (s, 1H, H-1), 4.83 (s, 6H, H-1), 4.51 (s br, 6H, OH-6), 4.14 (t, 2H, J = 6.6Hz, -CH₂); 4.03 (br, 1H, H-3'_{CD}), 3.64-3.36 (m, 27H, H-5_{CD}, H-3_{CD} and H-6_{CD}), 3.36-3.26 (m, 14H, H-2_{CD} and H-4_{CD}), 3.05 (t, 2H, J = 4.8Hz, -CH₂NH₂), 1.92 (t, 2H, J = 6.6Hz, J = 4.8 Hz, -CH₂).1399.4586; ESI-MS (m/z): calculated for [M⁺] 1229.12, found 1228.86; Anal. Calcd for C₄₈H₈₀ClO₃₄N₃: C 45.09, H 6.31, N 3.29; found: C 45.89, H 6.32, N 3.26.

3. ¹H and ¹³C NMR spectra of Mono- 6^{A} -[3-(3-(1,3-dioxoisoindolin-2-yl)ethyl)imidazol-1-ium]- 6^{A} -deoxy- β -cyclodextr-in tosylate **5a**

4. Mono-6^A-[3-(3-(1,3-dioxoisoindolin-2-yl)propyl)-imidazol-1-ium]-6^A-deoxy-β-cyclodex-trin tosylate **5b**

5. Mono- 6^{A} -[3-(4-(1,3-dioxoisoindolin-2-yl)butyl)-imidazol-1-ium]- 6^{A} -deoxy- β -

6. Mono- 6^{A} -[3-(6-(1,3-dioxoisoindolin-2-yl)hexyl)-imidazol-1-ium]- 6^{A} -deoxy- β -

cyclodextr-in tosylate 5d

7. Mono- 6^{A} -[3-(2-aminoethyl)-imidazol-1-ium]- 6^{A} -deoxy- β -cyclodextrin tosylate,

8. Mono- 6^{A} -[3-(3-aminopropyl)-imidazolium]- 6^{A} -deoxy- β -cyclodextrin tosylate, **6b**

9. Mono- 6^{A} -[3-(4-aminobutyl)-imidazol-1-ium]- 6^{A} -deoxy- β -cyclodextrin tosylate,

10. Mono- 6^{A} -[3-(6-aminohexyl)-imidazol-1-ium]- 6^{A} -deoxy- β -cyclodextrin tosylate, **6d**

11. Mono- 6^{A} -[3-(2-ammonioethyl)-imidazol-1-ium]- 6^{A} -deoxy- β -cyclodextrin chloride, **7a**

12. Mono- 6^{A} -[3-(3-ammoniopropyl)-imidazol-1-ium]- 6^{A} -deoxy- β -cyclodextrin chloride,

13. Mono- 6^{A} -[3-(4-ammoniobutyl)-imidazol-1-ium]- 6^{A} -deoxy- β -cyclodextrin chloride, **7c**

14. Mono- 6^{A} -[3-(6-ammoniohexyl)-imidazol-1-ium]- 6^{A} -deoxy- β -cyclodextrin

15. ESI-MS spectra

Mono- 6^{A} -[3-(2-(1,3-dioxoisoindolin-2-yl)ethyl)-imidazol-1-ium]- 6^{A} -deoxy- β -cyclodextri n tosylate, **5a**

Mono- 6^{A} -[3-(3-(1,3-dioxoisoindolin-2-yl)propyl)-imidazol-1-ium]- 6^{A} -deoxy- β -cyclodext -rin tosylate, **5b**

 $Mono-6^{A}-[3-(4-(1,3-dioxoisoindolin-2-yl)butyl)-imidazol-1-ium]-6^{A}-deoxy-\beta-cyclodextrin tosylate, ~5c$

 $Mono-6^{A}-[3-(6-(1,3-dioxoisoindolin-2-yl)hexyl)-imidazol-1-ium]-6^{A}-deoxy-\beta-cyclod-extrin tosylate,$ **5d**

Mono-6^A-[3-(2-aminoethyl)-imidazol-1-ium]-6^A-deoxy-β-cyclodextrin tosylate, **6a**

Mono- 6^{A} -[3-(4-aminobutyl)-imidazol-1-ium]- 6^{A} -deoxy- β -cyclodextrin tosylate, **6c**

 $Mono-6^{A}-[3-(2-ammonioethyl)-imidazol-1-ium]-6^{A}-deoxy-\beta-cyclodextrin chloride, \mbox{\bf 7a}$

Mono- 6^{A} -[3-(3-ammoniopropyl)-imidazol-1-ium]- 6^{A} -deoxy- β -cyclodextrin chloride, **7b**

Mono- 6^{A} -[3-(4-ammoniobutyl)-imidazol-1-ium]- 6^{A} -deoxy- β -cyclodextrin chloride, 7c

Mono-6^A-[3-(6-ammoniohexyl)-imidazol-1-ium]-6^A-deoxy-β-cyclodextrin chloride, **7d**

