
In vitro conversion of chanoclavine-I aldehyde to the stereoisomers festuclavine and pyroclavine was controlled by the second reduction step

1

Marco Matuschek $^{\rm a},$ Christiane Wallwey $^{\rm a},$ Beate Wollinsky $^{\rm a},$ Xiulan Xie $^{\rm b}$ and Shu-Ming Li $^{\rm a}$ *

^a Philipps-Universität Marburg, Institut für Pharmazeutische Biologie und Biotechnologie, Deutschhausstraße 17A, D-35037 Marburg, Germany. Email: shuming.li@Staff.uni-Marburg.de, Tel: 0049-6421-2822461, Fax: 0049-6421-2825365

^b Philipps-Universität Marburg, Fachbereich Chemie, Hans-Meerwein-Straße, 35032 Marburg, Germany.

Figure S1 HPLC analysis of the cultural extract of *P. commune* NRRL 2033 (B) by using ergot alkaloids or precursors as standards (A). The substances were detected with a Photodiode Array detector and illustrated for absorption at 282 nm.

Table S1 ¹H-NMR and ¹³C-NMR data of (8R,9S)-fumigaclavine A in protonated form (CD₃OD)

Position $\delta_{\rm C}$		$\delta_{\mathrm{H},}$ multi., J in Hz	HMBC correlation	
2	120.69	7.07, d, 1.3	C-2 to H-14	
3	107.80	-	C-3 to H-2	
4_{α}	25.15	3.03, ddd, 1.2, 11.7, 12.9	-	
		3.74, m		
4_{eta} 5_{eta}	64.16	3.80, m	C-5 to H-18	
7_{α}	58.25	3.49, d, 13.0	C-7 to H-17, H-18	
7_{β}		3.66, dd, 12.9, 4.0		
8_{β}	33.26	2.47, m	C-8 to H-17	
$9_{\alpha}^{'}$	69.89	5.78, br s	C-9 to H-17, H-7 $_{\alpha}$	
10_{α}	39.39	3.73, m	-	
11	126.91	-	C-11 to H-13	
12	113.69	6.76, d, 7.2	C-12 to H-14	
13	123.89	7.10, t, 7.7	C-13 to H-14	
14	110.84	7.22, d, 8.1	C-14 to H-12	
15	135.72	-	C-15 to H-2	
16	127.67	-	C-16 to H-2, H-12, H-14	
17	15.40	1.41, d, 7.6	C-17 to H- 7_{β}	
18	42.42	3.15, s	<u>.</u>	
19	172.08	-	C-19 to H-20	
20	20.66	1.88, s		

Table S2 NOE contacts for proving the stereochemistry of (8R,9S)-fumigaclavine A

Protons	Strength
$H-5_{\beta}$ to $H-7_{\beta}$	Medium
$H-10_{\alpha}$ to $H-4_{\alpha}$	Medium
$H-9_{\alpha}$ to $H-17$	Medium
$H-9_{\alpha}$ to $H-10_{\alpha}$	Medium
H-17 to H-10 $_{\alpha}$	Medium
H-17 to H- 7_{α}	Medium

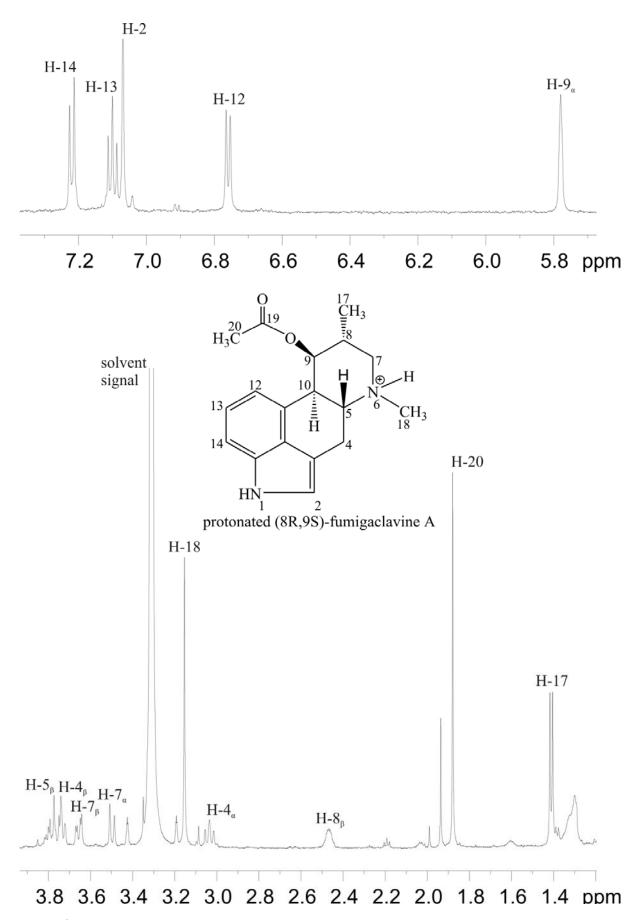


Figure S2.1 ¹H-NMR spectrum of (8R,9S)-fumigaclavine A in protonated form in CD₃OD

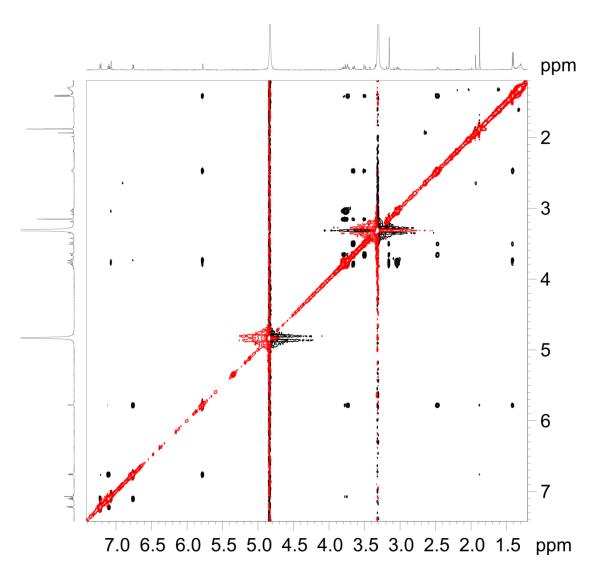


Figure S2.2 NOESY spectrum of (8R,9S)-fumigaclavine A in protonated form in CD₃OD



Figure S2.3 Enhanced parts of the HSQC spectrum of (8R,9S)-fumigaclavine A in protonated form in $\mathrm{CD_3OD}$

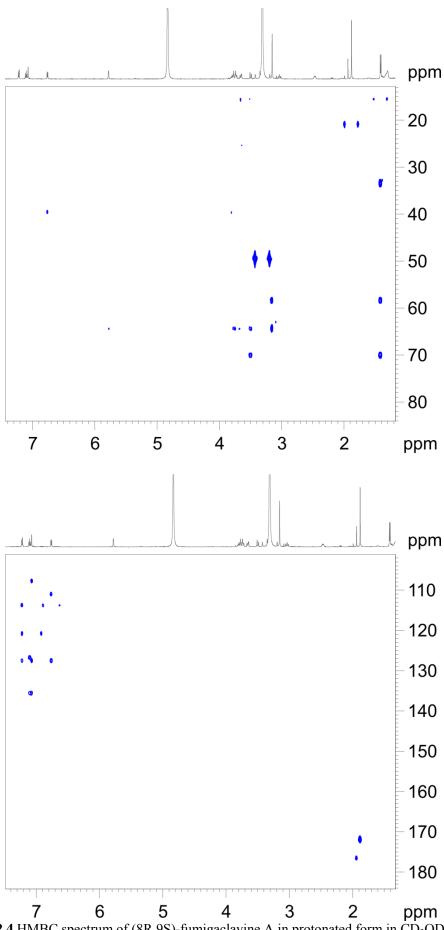
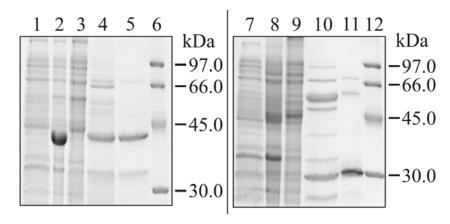



Figure S2.4 HMBC spectrum of (8R,9S)-fumigaclavine A in protonated form in CD₃OD

Figure S3 Analysis of the overproduction and purification of His₆-FgaOx3_{pc} (lanes 1-5) and FgaFS_{pc} (lanes 7-11). The proteins were separated on a 15% SDS-polyacrylamide gel and stained with Coomassie Brilliant Blue R-250. Lane 1: Total proteins before induction; 2: Total proteins after induction; 3: Soluble proteins after induction; 4: Ni-NTA elution of His₆-FgaOx3_{pc}; 5: Coresin elution of His₆-FgaOx3_{pc}; 6: Molecular weight standard; Lane 7: Total proteins before induction; 8: Total proteins after induction; 9: Soluble proteins after induction; 10: Co-resin elution of His₆-FgaFS_{pc}; 11: Ni-NTA elution of His₆-FgaFS_{pc}; 12: Molecular weight standard

Table S3 ¹H-NMR and ¹³C-NMR data of pyroclavine in protonated form (CD₃OD)

Position	δ_{C}	$\delta_{\rm H,}$ multi., J in Hz	HMBC correlation
2	120.29	7.03, d, 1.5	C-2 to H-4 $_{\alpha}$, H-4 $_{\beta}$, H-12
3	108.10	-	C-3 to H-2, H- 4_{α} , H- 4_{β}
4_{α}	25.55	2.99, ddd, 14.0, 11.6, 1.7	C-4 to H-5, H-18
4_{β}		3.69, dd, 14.2, 4.5	-
5_{β}	69.84	3.30**, td, 11.0, 4.5	C-5 to H-4 $_{\alpha}$, H-4 $_{\beta}$, H-7 $_{\alpha}$, H-9 $_{\beta}$, H-12, H-18
7_{α}^{\cdot}	62.86	3.51, dt, 12.8, 1.5	C-7 to H-17, H-18
7_{β}		3.41*, dd, 12.8, 3.9	-
8_{β}	28.12	2.49, m	C-8 to H-7 _{α} , H-7 _{β} , H-9 _{β} , H-17, H-18
9^r_{α}	32.72	2.63, ddt, 13.7, 3.6, 2.1	C-9 to H- 7_{α} , H-17
9_{β}		1.91, td, 13.1, 4.9	-
10°_{α}	35.56	3.41*, dt, 4.2, 11.6	C-10 to H- $4_{\rm B}$, H- $9_{\rm B}$,
11	130.42	-	C-11 to H-9 $_{\beta}$, H-10 $_{\alpha}$, H-13
12	113.95	6.90, dd, 7.2, 0.8	C-12 to H-2, H-13, H-14
13	123.89	7.11, dd, 8.2, 7.2	C-13 to H-12
14	110.65	7.20, d, 8.2	C-14 to H-12
15	135.07	-	C-15 to H-2, H-13
16	126.81	-	C-16 to H-2, H- 4_{β} , H-12, H-14
17	17.29	1.37, d, 7.5	C-17 to H-7 _{β} , H-9 _{β}
18	42.46	3.07, s	<u>-</u>

^{* =} overlapped signals, J measured from DQF-COSY cross peaks, ** = under the solvent signal

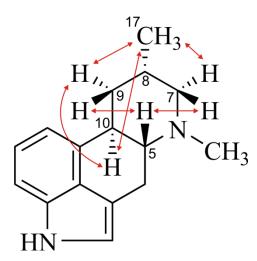
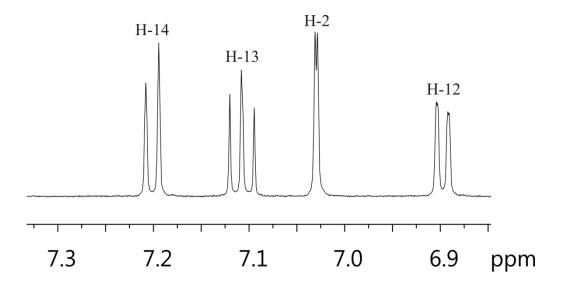
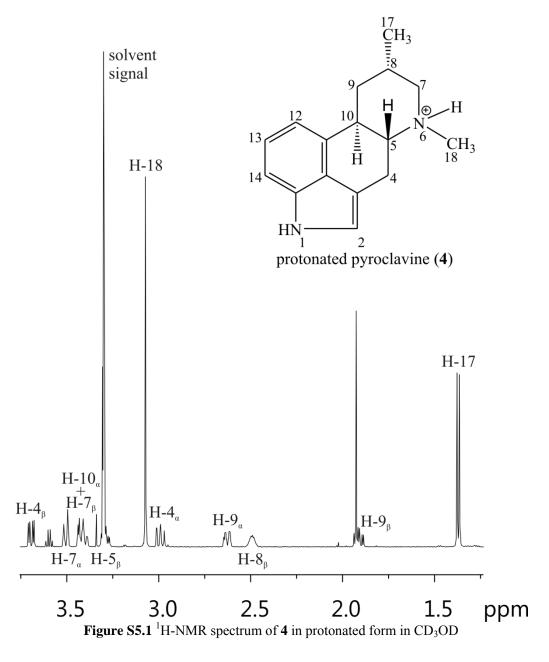




Figure S4 NOE contacts (red arrows) for proving the stereochemistry of pyroclavine

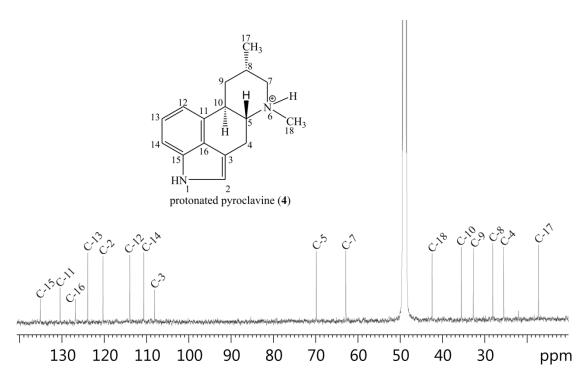


Figure S5.2 ¹³C-NMR spectrum of 4 in protonated form in CD₃OD

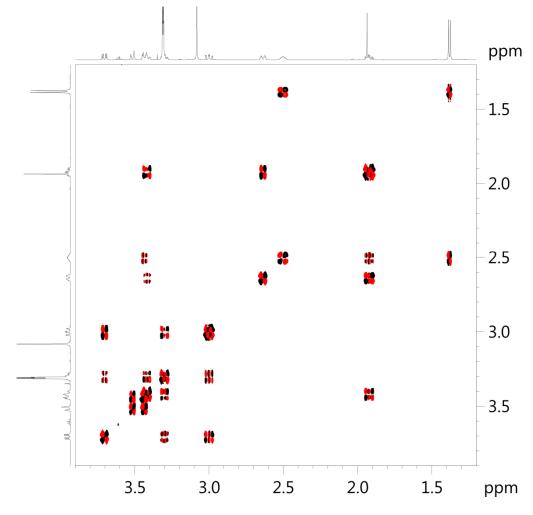


Figure S5.3 DQF-COSY spectrum of 4 in protonated form in CD₃OD

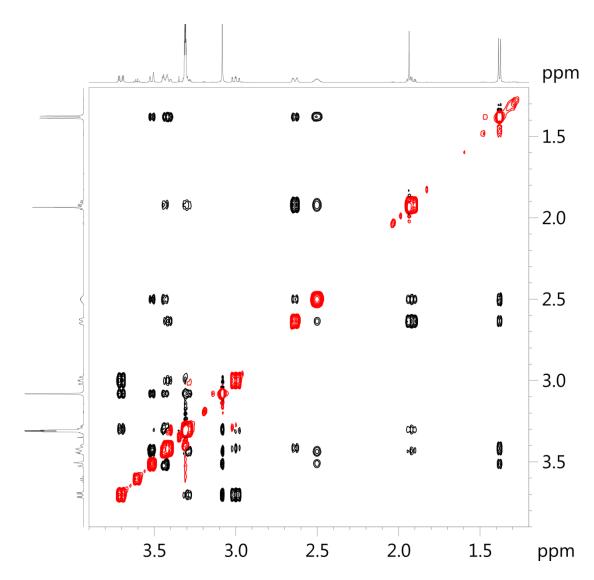


Figure S5.4 NOESY spectrum of 4 in protonated form in CD₃OD

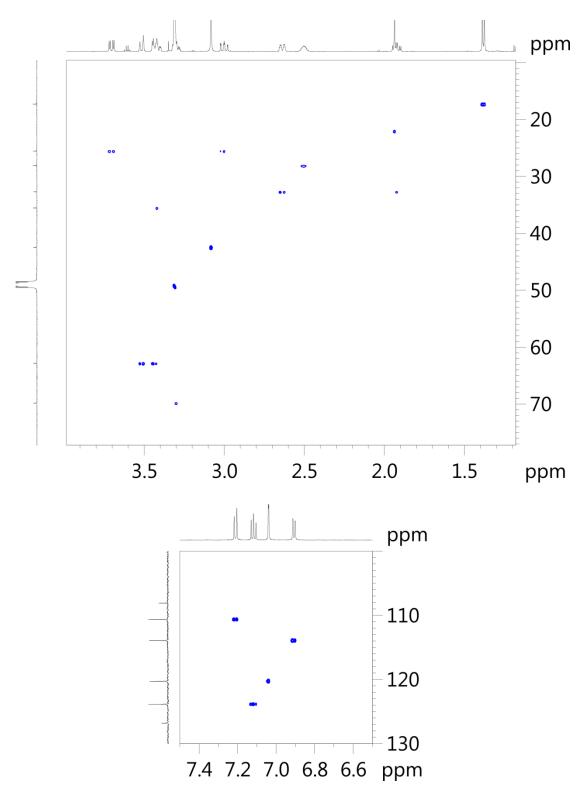


Figure S5.5 Enhanced parts of the HSQC spectrum of 4 in protonated form in CD₃OD

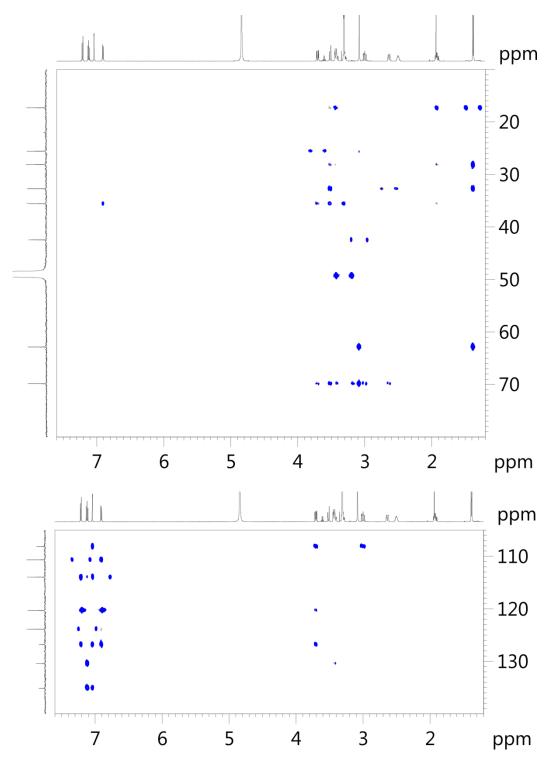
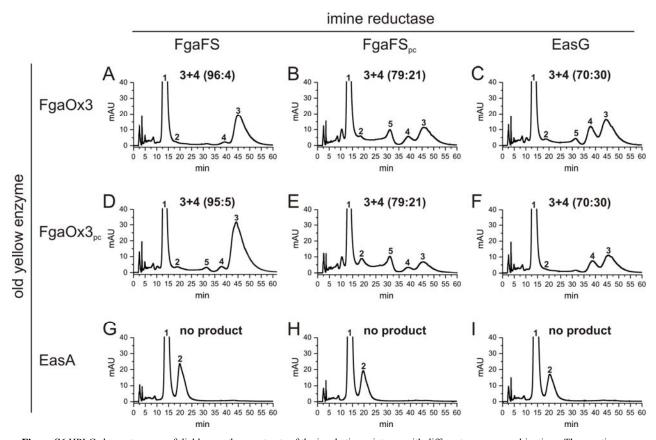



Figure S5.6 HMBC spectrum of 4 in protonated form in CD₃OD

Figure S6 HPLC chromatograms of dichloromethane extracts of the incubation mixtures with different enzyme combinations. The reaction mixtures contained 5 mM of the cofactors NAD⁺, FMN, NADPH, 1 mM chanoclavine-I and 5 µg of FgaDH, one old yellow enzyme and one imine reductase and were incubated at 30°C for 15 h. The substances were detected with a Photodiode Array detector and illustrated for absorption at 282 nm. 1: chanoclavine-I; 2: chanoclavine-I aldehyde; 3: festuclavine; 4: pyroclavine; 5: shunt product

Table S4 Conversion of chanoclavine-I aldehyde to festuciavine and pyroclavine in the presence of NADPH or NADH. The assays contained 10 µg of the recombinant enzymes each and were incubated at 30°C for 15 h.

enzyme combination	incubation with NADPH			incubation with NADH		
		ratio of	products		ratio of products	
	chanoclavine-I consumption (%)	festuclavine (3)	pyroclavine (4)	chanoclavine-I consumption (%)	festuclavine (3)	pyroclavine (4)
FgaOx3 _{pc} + FgaFS	78	95	5	28	88	12
$FgaOx3_{pc} + FgaFS_{pc}$	19	80	20	5	73	27
$FgaOx3_{pc} + EasG$	70	72	28	12	63	37
FgaOx3 + FgaFS	79	96	4	96	92	8
$FgaOx3 + FgaFS_{pc}$	29	81	19	28	78	22
FgaOx3 + EasG	75	71	29	63	66	34