Chemical auxiliary-free polymerization yielding non-

linear PEG for protein-resistant application

Fong-Sian Lin,^{a, b} Chih-Te Chien,^a Wan-Ching Chiu,^a Shu-Yi Lin,^{* a} Fan-Gang Tseng,^b Yeukuang Hwu^c and Chung-Shi Yang ^{a, b}

^a Center for Nanomedicine Research, National Health Research Institutes, 35 Keyan Road Zhunan, Miaoli 35053, Taiwan. To whom correspondence should be addressed. Tel: 886-37-246-166 ext. 38127; Fax: 886-37-586447; E-mail address: shuyi@nhri.org.tw

^b Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan.

^c Institute of Physics, Academia Sinica Research Institutes, Nankang, Taipei 115, Taiwan.

Supporting Information

Figure S1 ¹H NMR spectra of (a) ethylene glycol, (b) commercial linear PEG, and (c) our NLPEG, respectively, which were obtained in D_2O and room temperature.

Figure S2 ¹³C NMR inverse gated spectrum with the integration of signal intensity showing that the repeating units of NLPEG contain CH and CH_2 at a ratio of 1: 12.

The calculation of DB value: Regarding the calculation of the degree of branching (DB), the DB was commonly determined according to the following equation:

$$DB = \frac{D+T}{D+L+T} \approx \frac{2D}{2D+L}$$

In which D, T and L are that the fractions of dendritic, terminal and linear units in the resulting polymer are obtained from the integration of the respective signals in IG ¹³C NMR-spectra. For example, while the ratio of CH/CH₂ was 1:12, the methane carbon (CH) and the methylene carbon (CH₂) presented dendritic units and linear units, respectively. Thus, D = 1, L = 12, so that DB = $(2 \times 1)/(2 \times 1 + 12) = 0.143$ (shown in table 1 the fourth row of DB values) and so on.

Details of Structure Analysis: To aid the explanation and understanding of table 1, the calculation processes were written as following. Since the ratio of CH/CH₂ was $1:12 \pm 3$, which was estimated by seven different samples. This result illustrated that the DB values of our novel polymer have a distribution from a minimum value (1:9) to a maximum value (1:15). Thus, we listed in the table 1 that was based all possibilities. Additionally, these parameters of repeating units (e.g., x, y, z and n) of each segment need to be defined as an integer.

Total Molecular weight $(M_w) = (M_{w1} + M_{w2} + M_{w3}) \times n + M_{w4}$ = $(43x + 44y + 44z + 17) \times n + 46$ -----(eq.1)

If
$$Mw = 2000 \longrightarrow (43x + 44y + 44z + 17) \times n + 46 = 2000$$

 $43nx + 44 n(y+z) + 17n = 1954 - ----(eq.2)$

If r = CH/CH2=1/9

. .

thus, the number of CH2 (N_{CH2}) = x + 2y + 2zthus, the number of CH (N_{CH}) = xy + z = 4x------(eq.3)

(Note that, $X \neq 0$, $z \neq 0$, to avoid the side chain disappearance of NLPEG).

. . . .

. .

So that
If
$$r = CH/CH2=1/10$$
 $y + z = \frac{9}{2}x \longrightarrow 241nx + 17n = 1954 ----(eq.4-2)$
If $r = CH/CH2=1/11$ $y + z = 5x \longrightarrow 263nx + 17n = 1954 ----(eq.4-3)$
If $r = CH/CH2=1/12$ $y + z = \frac{11}{2}x \longrightarrow 285nx + 17n = 1954 ----(eq.4-4)$
If $r = CH/CH2=1/13$ $y + z = 6x \longrightarrow 307nx + 17n = 1954 -----(eq.4-5)$
If $r = CH/CH2=1/14$ $y + z = \frac{13}{2}x \longrightarrow 329nx + 17n = 1954 -----(eq.4-6)$
If $r = CH/CH2=1/15$ $y + z = 7x \longrightarrow 351nx + 17n = 1954 -----(eq.4-7)$

Parameters in eq. 4-1			Parameters in eq. 4-2		
219nx+17n = 1954 and $y + z = 4x$			(241nx + 17n = 1954) and $y + z = (9/2)x$		
x = 1	y + z = 4	$n = 8.3 \rightleftharpoons 8$	x = 1	$y + z = 4.5^{b}$	$n = 7.6 \Rightarrow 8$
x = 2	y + z = 8	$n = 3.9 \Rightarrow 4$	x = 2	y + z = 9	$n = 3.9 \rightleftharpoons 4$
x = 3	y + z = 12	$n = 3.1 \approx 3$	x = 3	y + z = 13.5	$n = 2.6 \rightleftharpoons 3$
x = 4	y + z = 16	$n = 2.2 \rightleftharpoons 2$	x = 4	y + z = 18	$n = 1.9 \rightleftharpoons 2$
x = 5	y + z = 20	$n = 1.8 \rightleftharpoons 2$	x = 5	y + z = 22.5	$n = 1.6 \rightleftharpoons 2$
x = 6	y + z = 24	$n = 1.5 \rightleftharpoons 2$	x = 6	y + z = 27	$n = 1.3 \rightleftharpoons 1$
X = 7	y + z = 28	$n = 1.26 \rightleftharpoons 1$	x = 7	y + z = 31.5	$n = 1.1 \rightleftharpoons 1$
Parameters in eq. 4-3			Parameters in eq. 4-4		
(263nx + 17n = 1954) and $y + z = 5x$			(285nx + 17n = 1954) and $y + z = (11/2)x$		
x = 1	y + z = 5	$n = 7.0 \Rightarrow 7$	x = 1	y + z = 5.5	$n = 6.5 \rightleftharpoons 7$
x = 2	y + z = 10	$n = 3.6 \rightleftharpoons 4$	x = 2	y + z = 11	$n = 3.3 \rightleftharpoons 3$
x = 3	y + z = 15	$n = 2.4 \Rightarrow 2$	x = 3	y + z = 16.5	$n = 2.2 \rightleftharpoons 2$
x = 4	y + z = 20	$n = 1.8 \Rightarrow 2$	x = 4	y + z = 22	$n = 1.7 \rightleftharpoons 2$
x = 5	y + z = 25	$n = 1.5 \Rightarrow 2$	x = 5	y + z = 27.5	$n = 1.4 \rightleftharpoons 1$
x = 6	y + z = 30	n = 1.2 = 1	x = 6	y + z = 33	$n = 1.1 \rightleftharpoons 1$
x = 7	y + z = 35	$n = 1.1 \rightleftharpoons 1$	x = 7	y + z = 38.5	$n = 0.97 \rightleftharpoons 1$
Parameters in eq. 4-5			Parameters in eq. 4-6		
Parame	ters in eq. 4-5		Parame	ters in eq. 4-6	
Parame (307nx	ters in eq. 4-5 + $17n = 1954$) a	and $y + z = 6x$	Parame (329nx	ters in eq. 4-6 + $17n = 1954$) :	and $y + z = (13/2)x$
Parame $(307nx)$ x = 1	ters in eq. 4-5 + $17n = 1954$) a y + z = 6	and $y + z = 6x$ n = 6.0 = 6	Parame $(329nx)$ x = 1	ters in eq. 4-6 + $17n = 1954$) a y + z = 6.5	and $y + z = (13/2)x$ n = 5.6 = 6
Parame ($307nx$) x = 1 x = 2	ters in eq. 4-5 + $17n = 1954$) a y + z = 6 y + z = 12	and $y + z = 6x$ $n = 6.0 \Rightarrow 6$ $n = 3.1 \Rightarrow 3$	Parame (329nx x = 1 x = 2	ters in eq. 4-6 + $17n = 1954$) a y + z = 6.5 y + z = 13	and $y + z = (13/2)x$ n = 5.6 = 6 n = 2.9 = 3
Parame ($307nx$) x = 1 x = 2 x = 3	ters in eq. 4-5 + $17n = 1954$) a y + z = 6 y + z = 12 y + z = 18	and $y + z = 6x$ $n = 6.0 \doteq 6$ $n = 3.1 \doteq 3$ $n = 2.1 \doteq 2$	Parame (329nx x = 1 x = 2 x = 3	ters in eq. 4-6 + $17n = 1954$) a y + z = 6.5 y + z = 13 y + z = 19.5	and $y + z = (13/2)x$ $n = 5.6 \approx 6$ $n = 2.9 \approx 3$ $n = 1.9 \approx 2$
Parame ($307nx$) x = 1 x = 2 x = 3 x = 4	ters in eq. 4-5 + $17n = 1954$) a y + z = 6 y + z = 12 y + z = 18 y + z = 24	and $y + z = 6x$ $n = 6.0 \Rightarrow 6$ $n = 3.1 \Rightarrow 3$ $n = 2.1 \Rightarrow 2$ $n = 1.6 \Rightarrow 2$	Parame (329nx x = 1 x = 2 x = 3 x = 4	ters in eq. 4-6 + $17n = 1954$) : y + z = 6.5 y + z = 13 y + z = 19.5 y + z = 26	and $y + z = (13/2)x$ n = 5.6 = 6 n = 2.9 = 3 n = 1.9 = 2 n = 1.5 = 2
Parame (307nx x = 1 x = 2 x = 3 x = 4 x = 5	ters in eq. 4-5 + $17n = 1954$) a y + z = 6 y + z = 12 y + z = 18 y + z = 24 y + z = 30	and $y + z = 6x$ $n = 6.0 \Rightarrow 6$ $n = 3.1 \Rightarrow 3$ $n = 2.1 \Rightarrow 2$ $n = 1.6 \Rightarrow 2$ $n = 1.3 \Rightarrow 1$	Parame ($329nx$ x = 1 x = 2 x = 3 x = 4 x = 5	ters in eq. 4-6 + $17n = 1954$) at y + z = 6.5 y + z = 13 y + z = 19.5 y + z = 26 y + z = 32.5	and $y + z = (13/2)x$ n = 5.6 = 6 n = 2.9 = 3 n = 1.9 = 2 n = 1.5 = 2 n = 1.2 = 1
Parame (307nx x = 1 x = 2 x = 3 x = 4 x = 5 x = 6	ters in eq. 4-5 + $17n = 1954$) a y + z = 6 y + z = 12 y + z = 18 y + z = 24 y + z = 30 y + z = 36	and $y + z = 6x$ $n = 6.0 \Rightarrow 6$ $n = 3.1 \Rightarrow 3$ $n = 2.1 \Rightarrow 2$ $n = 1.6 \Rightarrow 2$ $n = 1.3 \Rightarrow 1$ $n = 1.0 \Rightarrow 1$	Parame $(329nx)$ $x = 1$ $x = 2$ $x = 3$ $x = 4$ $x = 5$ $x = 6$	ters in eq. 4-6 + $17n = 1954$) a y + z = 6.5 y + z = 13 y + z = 19.5 y + z = 26 y + z = 32.5 y + z = 39	and $y + z = (13/2)x$ $n = 5.6 \doteq 6$ $n = 2.9 \doteq 3$ $n = 1.9 \doteq 2$ $n = 1.5 \doteq 2$ $n = 1.2 \doteq 1$ $n = 0.98 \doteq 1$
Parame (307nx x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7	ters in eq. 4-5 + $17n = 1954$) a y + z = 6 y + z = 12 y + z = 18 y + z = 24 y + z = 30 y + z = 36 y + z = 42	and $y + z = 6x$ $n = 6.0 \Rightarrow 6$ $n = 3.1 \Rightarrow 3$ $n = 2.1 \Rightarrow 2$ $n = 1.6 \Rightarrow 2$ $n = 1.3 \Rightarrow 1$ $n = 1.0 \Rightarrow 1$ $n = 0.92 \Rightarrow 1$	Parame $(329nx)$ $x = 1$ $x = 2$ $x = 3$ $x = 4$ $x = 5$ $x = 6$ $x = 7$	ters in eq. 4-6 + $17n = 1954$) at y + z = 6.5 y + z = 13 y + z = 19.5 y + z = 26 y + z = 32.5 y + z = 39 y + z = 45.5	and $y + z = (13/2)x$ n = 5.6 = 6 n = 2.9 = 3 n = 1.9 = 2 n = 1.5 = 2 n = 1.2 = 1 n = 0.98 = 1 n = 0.84 = 1
Parame ($307nx$) x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 Parame	ters in eq. 4-5 + $17n = 1954$) a y + z = 6 y + z = 12 y + z = 18 y + z = 24 y + z = 30 y + z = 36 y + z = 42 eters in eq. 4-7	and $y + z = 6x$ $n = 6.0 \Rightarrow 6$ $n = 3.1 \Rightarrow 3$ $n = 2.1 \Rightarrow 2$ $n = 1.6 \Rightarrow 2$ $n = 1.3 \Rightarrow 1$ $n = 1.0 \Rightarrow 1$ $n = 0.92 \Rightarrow 1$	Parame $(329nx)$ $x = 1$ $x = 2$ $x = 3$ $x = 4$ $x = 5$ $x = 6$ $x = 7$	ters in eq. 4-6 + $17n = 1954$) a y + z = 6.5 y + z = 13 y + z = 19.5 y + z = 26 y + z = 32.5 y + z = 39 y + z = 45.5	and $y + z = (13/2)x$ $n = 5.6 \doteq 6$ $n = 2.9 \doteq 3$ $n = 1.9 \doteq 2$ $n = 1.5 \doteq 2$ $n = 1.2 \doteq 1$ $n = 0.98 \doteq 1$ $n = 0.84 \doteq 1$
Parame ($307nx$ x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 Parame ($351nx$	ters in eq. 4-5 + $17n = 1954$) a y + z = 6 y + z = 12 y + z = 18 y + z = 24 y + z = 30 y + z = 36 y + z = 42 eters in eq. 4-7 + $17n = 1954$) a	and $y + z = 6x$ $n = 6.0 \Rightarrow 6$ $n = 3.1 \Rightarrow 3$ $n = 2.1 \Rightarrow 2$ $n = 1.6 \Rightarrow 2$ $n = 1.3 \Rightarrow 1$ $n = 1.0 \Rightarrow 1$ $n = 0.92 \Rightarrow 1$ and $y + z = 7x$	Parame $(329nx)$ $x = 1$ $x = 2$ $x = 3$ $x = 4$ $x = 5$ $x = 6$ $x = 7$	ters in eq. 4-6 + $17n = 1954$) a y + z = 6.5 y + z = 13 y + z = 19.5 y + z = 26 y + z = 32.5 y + z = 39 y + z = 45.5	and $y + z = (13/2)x$ $n = 5.6 \Rightarrow 6$ $n = 2.9 \Rightarrow 3$ $n = 1.9 \Rightarrow 2$ $n = 1.5 \Rightarrow 2$ $n = 1.2 \Rightarrow 1$ $n = 0.98 \Rightarrow 1$ $n = 0.84 \Rightarrow 1$
Parame ($307nx$ x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 Parame ($351nx$ x = 1	ters in eq. 4-5 + $17n = 1954$) a y + z = 6 y + z = 12 y + z = 18 y + z = 24 y + z = 30 y + z = 36 y + z = 42 eters in eq. 4-7 + $17n = 1954$) a y + z = 7	and $y + z = 6x$ $n = 6.0 \Rightarrow 6$ $n = 3.1 \Rightarrow 3$ $n = 2.1 \Rightarrow 2$ $n = 1.6 \Rightarrow 2$ $n = 1.3 \Rightarrow 1$ $n = 1.0 \Rightarrow 1$ $n = 0.92 \Rightarrow 1$ and $y + z = 7x$ $n = 5.3 \Rightarrow 5$	Parame (329nx) x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7	ters in eq. 4-6 + $17n = 1954$) a y + z = 6.5 y + z = 13 y + z = 19.5 y + z = 26 y + z = 32.5 y + z = 39 y + z = 45.5	and $y + z = (13/2)x$ $n = 5.6 \doteq 6$ $n = 2.9 \doteq 3$ $n = 1.9 \doteq 2$ $n = 1.5 \doteq 2$ $n = 1.2 \doteq 1$ $n = 0.98 \doteq 1$ $n = 0.84 \doteq 1$
Parame ($307nx$ x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 Parame ($351nx$ x = 1 x = 2	ters in eq. 4-5 + $17n = 1954$) a y + z = 6 y + z = 12 y + z = 18 y + z = 24 y + z = 30 y + z = 36 y + z = 42 eters in eq. 4-7 + $17n = 1954$) a y + z = 7 y + z = 14	and $y + z = 6x$ $n = 6.0 \doteq 6$ $n = 3.1 \doteq 3$ $n = 2.1 \doteq 2$ $n = 1.6 \doteq 2$ $n = 1.3 \doteq 1$ $n = 1.0 \doteq 1$ $n = 0.92 \doteq 1$ and $y + z = 7x$ $n = 5.3 \doteq 5$ $n = 2.7 \doteq 3$	Parame $(329nx)$ $x = 1$ $x = 2$ $x = 3$ $x = 4$ $x = 5$ $x = 6$ $x = 7$	ters in eq. 4-6 + $17n = 1954$) a y + z = 6.5 y + z = 13 y + z = 19.5 y + z = 26 y + z = 32.5 y + z = 39 y + z = 45.5	and $y + z = (13/2)x$ n = 5.6 = 6 n = 2.9 = 3 n = 1.9 = 2 n = 1.5 = 2 n = 1.2 = 1 n = 0.98 = 1 n = 0.84 = 1
Parame ($307nx$ x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 Parame ($351nx$ x = 1 x = 2 x = 3	ters in eq. 4-5 + $17n = 1954$) a y + z = 6 y + z = 12 y + z = 18 y + z = 24 y + z = 30 y + z = 36 y + z = 42 eters in eq. 4-7 + $17n = 1954$) a y + z = 7 y + z = 14 y + z = 21	and $y + z = 6x$ $n = 6.0 \Rightarrow 6$ $n = 3.1 \Rightarrow 3$ $n = 2.1 \Rightarrow 2$ $n = 1.6 \Rightarrow 2$ $n = 1.3 \Rightarrow 1$ $n = 1.0 \Rightarrow 1$ $n = 0.92 \Rightarrow 1$ and $y + z = 7x$ $n = 5.3 \Rightarrow 5$ $n = 2.7 \Rightarrow 3$ $n = 1.8 \Rightarrow 2$	Parame (329nx) x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7	ters in eq. 4-6 + $17n = 1954$) a y + z = 6.5 y + z = 13 y + z = 19.5 y + z = 26 y + z = 32.5 y + z = 39 y + z = 45.5	and $y + z = (13/2)x$ $n = 5.6 \doteq 6$ $n = 2.9 \doteq 3$ $n = 1.9 \doteq 2$ $n = 1.5 \doteq 2$ $n = 1.2 \doteq 1$ $n = 0.98 \doteq 1$ $n = 0.84 \doteq 1$
Parame ($307nx$ x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 Parame ($351nx$ x = 1 x = 2 x = 3 x = 4	ters in eq. 4-5 + $17n = 1954$) a y + z = 6 y + z = 12 y + z = 18 y + z = 24 y + z = 30 y + z = 36 y + z = 42 eters in eq. 4-7 + $17n = 1954$) a y + z = 7 y + z = 14 y + z = 21 y + z = 28	and $y + z = 6x$ n = 6.0 = 6 n = 3.1 = 3 n = 2.1 = 2 n = 1.6 = 2 n = 1.3 = 1 n = 1.0 = 1 n = 0.92 = 1 and $y + z = 7x$ n = 5.3 = 5 n = 2.7 = 3 n = 1.8 = 2 n = 1.4 = 1	Parame $(329nx)$ $x = 1$ $x = 2$ $x = 3$ $x = 4$ $x = 5$ $x = 6$ $x = 7$	ters in eq. 4-6 + $17n = 1954$) a y + z = 6.5 y + z = 13 y + z = 19.5 y + z = 26 y + z = 32.5 y + z = 39 y + z = 45.5	and $y + z = (13/2)x$ n = 5.6 = 6 n = 2.9 = 3 n = 1.9 = 2 n = 1.5 = 2 n = 1.2 = 1 n = 0.98 = 1 n = 0.84 = 1
Parame ($307nx$ x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 Parame ($351nx$ x = 1 x = 2 x = 3 x = 4 x = 5	ters in eq. 4-5 + $17n = 1954$) a y + z = 6 y + z = 12 y + z = 18 y + z = 24 y + z = 30 y + z = 36 y + z = 42 eters in eq. 4-7 + $17n = 1954$) a y + z = 7 y + z = 14 y + z = 21 y + z = 28 y + z = 35	and $y + z = 6x$ n = 6.0 = 6 n = 3.1 = 3 n = 2.1 = 2 n = 1.6 = 2 n = 1.3 = 1 n = 1.0 = 1 n = 0.92 = 1 and $y + z = 7x$ n = 5.3 = 5 n = 2.7 = 3 n = 1.8 = 2 n = 1.4 = 1 n = 1.1 = 1	Parame (329nx) x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7	ters in eq. 4-6 + $17n = 1954$) a y + z = 6.5 y + z = 13 y + z = 19.5 y + z = 26 y + z = 32.5 y + z = 39 y + z = 45.5	and $y + z = (13/2)x$ $n = 5.6 \doteq 6$ $n = 2.9 \doteq 3$ $n = 1.9 \doteq 2$ $n = 1.5 \doteq 2$ $n = 1.2 \doteq 1$ $n = 0.98 \doteq 1$ n = 0.84 = 1
Parame ($307nx$) x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 Parame ($351nx$) x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 Parame	ters in eq. 4-5 + $17n = 1954$) a y + z = 6 y + z = 12 y + z = 18 y + z = 24 y + z = 30 y + z = 36 y + z = 42 eters in eq. 4-7 + $17n = 1954$) a y + z = 7 y + z = 7 y + z = 14 y + z = 21 y + z = 28 y + z = 35 y + z = 42	and $y + z = 6x$ n = 6.0 = 6 n = 3.1 = 3 n = 2.1 = 2 n = 1.6 = 2 n = 1.3 = 1 n = 1.0 = 1 n = 0.92 = 1 and $y + z = 7x$ n = 5.3 = 5 n = 2.7 = 3 n = 1.8 = 2 n = 1.4 = 1 n = 1.1 = 1 n = 0.92 = 1	Parame $(329nx)$ $x = 1$ $x = 2$ $x = 3$ $x = 4$ $x = 5$ $x = 6$ $x = 7$	ters in eq. 4-6 + $17n = 1954$) a y + z = 6.5 y + z = 13 y + z = 19.5 y + z = 26 y + z = 32.5 y + z = 39 y + z = 45.5	and $y + z = (13/2)x$ n = 5.6 = 6 n = 2.9 = 3 n = 1.9 = 2 n = 1.5 = 2 n = 1.2 = 1 n = 0.98 = 1 n = 0.84 = 1

Note that, the sum of y + z is integer, if is non-integer that should be culled. All calculations allow the n value to be maximized. The gray rows were chosen to list in table 1, based on the x and n had supposed minimum and maximum value, respectively.

Total Molecular weight $(M_w) = (M_{w1} + M_{w2} + M_{w3}) \times n + M_{w4}$ = $(43x + 44y + 44z + 17) \times n + 46$ -----(eq.1)

If
$$Mw = 25000 \longrightarrow (43x + 44y + 44z + 17) \times n + 46 = 25000$$

 $43nx + 44 n(y+z) + 17n = 24954 ------(eq.2)$

If r = CH/CH2=1/9

thus, the number of CH2 (N_{CH2}) = x + 2y + 2zthus, the number of CH (N_{CH}) = xy + z = 4x------(eq.3)

(Note that, $X \neq 0$, $z \neq 0$, to avoid the side chain disappearance of NLPEG.)

To combine eq. 2 and eq. 3
$$219nx + 17n = 24954 ---(eq.4-1)$$

If $r = CH/CH2=1/10$ $y + z = \frac{9}{2}x - 241nx + 17n = 24954 ---(eq.4-2)$
If $r = CH/CH2=1/11$ $y + z = 5x - 263nx + 17n = 24954 ---(eq.4-3)$
If $r = CH/CH2=1/12$ $y + z = \frac{11}{2}x - 285nx + 17n = 24954 ---(eq.4-4)$
If $r = CH/CH2=1/13$ $y + z = 6x - 307nx + 17n = 24954 ---(eq.4-5)$
If $r = CH/CH2=1/14$ $y + z = \frac{13}{2}x - 329nx + 17n = 24954 ---(eq.4-6)$
If $r = CH/CH2=1/15$ $y + z = 7x - 351nx + 17n = 24954 ---(eq.4-7)$

Parameters in eq. 4-1			Parameters in eq. 4-2		
219nx+17n = 24954 and $y + z = 4x$			(241nx + 17n = 24954) and $y + z = (9/2)x$		
x = 1	y + z = 4	$n = 105.7 \Rightarrow 106$	x = 1	y + z = 4.5	$n = 96.7 \rightleftharpoons 97$
x = 2	y + z = 8	$n = 54.8 \rightleftharpoons 55$	x = 2	y + z = 9	$n = 50.0 \Rightarrow 50$
x = 3	y + z = 12	$n = 37.0 \Rightarrow 37$	x = 3	y + z = 13.5	$n = 33.7 \Rightarrow 34$
$\mathbf{x} = 4$	y + z = 16	$n = 27.9 \rightleftharpoons 28$	x = 4	y + z = 18	$n = 25.4 \rightleftharpoons 25$
x = 5	y + z = 20	$n = 22.4 \rightleftharpoons 22$	x = 5	y + z = 22.5	$n = 20.4 \rightleftharpoons 20$
x = 6	y + z = 24	$n = 18.7 \rightleftharpoons 19$	x = 6	y + z = 27	$n = 17.1 \rightleftharpoons 17$
X = 7	y + z = 28	$n = 16.1 \approx 16$	x = 7	y + z = 31.5	$n = 14.6 \rightleftharpoons 15$
Parameters in eq. 4-3			Parameters in eq. 4-4		
(263nx + 17n = 24954) and $y + z = 5x$			(285nx+17n = 24954) and $y + z = (11/2)x$		
x = 1	y + z = 5	$n = 89.1 \approx 89$	x = 1	y + z = 5.5	$n = 82.6 \rightleftharpoons 83$
x = 2	y + z = 10	$n = 46.0 \rightleftharpoons 46$	x = 2	y + z = 11	$n = 42.5 \rightleftharpoons 43$
x = 3	y + z = 15	$n = 31.0 \Rightarrow 31$	x = 3	y + z = 16.5	$n = 28.6 \rightleftharpoons 29$
$\mathbf{x} = 4$	y + z = 20	$n = 23.3 \rightleftharpoons 23$	$\mathbf{x} = 4$	y + z = 22	$n = 21.6 \rightleftharpoons 22$
x = 5	y + z = 25	$n = 18.7 \rightleftharpoons 19$	x = 5	y + z = 27.5	$n = 17.3 \rightleftharpoons 17$
x = 6	y + z = 30	$n = 15.6 \Rightarrow 16$	x = 6	y + z = 33	$n = 14.4 \rightleftharpoons 14$
x = 7	y + z = 35	$n = 13.4 \rightleftharpoons 13$	x = 7	y + z = 38.5	$n = 12.4 \rightleftharpoons 12$
Parameters in eq. 4-5			Parameters in eq. 4-6		
Parame	ters in eq. 4-5		Parame	ters in eq. 4-6	
Parame (307nx	ters in eq. 4-5 + $17n = 2495$	4) and $y + z = 6x$	(329nx-	ters in eq. 4-6 ⊦17n = 24954) a	and $y + z = (13/2)x$
Parame $(307nx)$ x = 1	ters in eq. 4-5 + $17n = 2495$ y + z = 6	4) and $y + z = 6x$ n = 77.0 = 77	$\begin{array}{r} \text{Paramet}\\ (329\text{nx}-)\\ x=1 \end{array}$	ters in eq. 4-6 + $17n = 24954$) a y + z = 6.5	and $y + z = (13/2)x$ n = 72.1 = 72
Parame ($307nx$) x = 1 x = 2	ters in eq. 4-5 + $17n = 2495$ y + z = 6 y + z = 12	4) and $y + z = 6x$ n = 77.0 = 77 n = 39.5 = 40	Paramet (329nx- x = 1 x = 2	ters in eq. 4-6 + $17n = 24954$) a y + z = 6.5 y + z = 13	and $y + z = (13/2)x$ n = 72.1 = 72 n = 37.0 = 37
Parame ($307nx$) x = 1 x = 2 x = 3	ters in eq. 4-5 + $17n = 2495$ y + z = 6 y + z = 12 y + z = 18	4) and $y + z = 6x$ n = 77.0 = 77 n = 39.5 = 40 n = 26.6 = 27	$\begin{array}{c} \text{Parametric} \\ (329\text{nx}-1) \\ \hline x = 1 \\ \hline x = 2 \\ \hline x = 3 \end{array}$	ters in eq. 4-6 + $17n = 24954$) a y + z = 6.5 y + z = 13 y + z = 19.5	and $y + z = (13/2)x$ n = 72.1 = 72 n = 37.0 = 37 n = 24.9 = 25
Parame ($307nx$) x = 1 x = 2 x = 3 x = 4	ters in eq. 4-5 + $17n = 2495$ y + z = 6 y + z = 12 y + z = 18 y + z = 24	4) and $y + z = 6x$ n = 77.0 = 77 n = 39.5 = 40 n = 26.6 = 27 n = 20.0 = 20	Parameter $(329nx-x = 1)$ x = 2 x = 3 x = 4	ters in eq. 4-6 +17n = 24954) a y + z = 6.5 y + z = 13 y + z = 19.5 y + z = 26	$ \begin{array}{l} \text{and } y + z = (13/2)x \\ n = 72.1 \rightleftharpoons 72 \\ n = 37.0 \rightleftharpoons 37 \\ n = 24.9 \rightleftharpoons 25 \\ n = 18.7 \rightleftharpoons 19 \end{array} $
Parame ($307nx$ x = 1 x = 2 x = 3 x = 4 x = 5	ters in eq. 4-5 + $17n = 2495$ y + z = 6 y + z = 12 y + z = 18 y + z = 24 y + z = 30	4) and $y + z = 6x$ n = 77.0 = 77 n = 39.5 = 40 n = 26.6 = 27 n = 20.0 = 20 n = 16.1 = 16	Parameter $(329nx-x = 1)$ x = 1 x = 2 x = 3 x = 4 x = 5	ters in eq. 4-6 +17n = 24954) a y + z = 6.5 y + z = 13 y + z = 19.5 y + z = 26 y + z = 32.5	and $y + z = (13/2)x$ n = 72.1 = 72 n = 37.0 = 37 n = 24.9 = 25 n = 18.7 = 19 n = 15.0 = 15
Parame ($307nx$ x = 1 x = 2 x = 3 x = 4 x = 5 x = 6	ters in eq. 4-5 + $17n = 2495$ y + z = 6 y + z = 12 y + z = 18 y + z = 24 y + z = 30 y + z = 36	4) and $y + z = 6x$ n = 77.0 = 77 n = 39.5 = 40 n = 26.6 = 27 n = 20.0 = 20 n = 16.1 = 16 n = 13.4 = 13	Parameter $(329nx-x = 1)$ x = 1 x = 2 x = 3 x = 4 x = 5 x = 6	ters in eq. 4-6 +17n = 24954) a y + z = 6.5 y + z = 13 y + z = 19.5 y + z = 26 y + z = 32.5 y + z = 39	$\begin{array}{l} \text{and } y + z = (13/2)x \\ n = 72.1 \rightleftharpoons 72 \\ n = 37.0 \rightleftharpoons 37 \\ n = 24.9 \rightleftharpoons 25 \\ n = 18.7 \rightleftharpoons 19 \\ n = 15.0 \rightleftharpoons 15 \\ n = 12.5 \rightleftharpoons 13 \end{array}$
Parame (307nx x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7	ters in eq. 4-5 + $17n = 2495$ y + z = 6 y + z = 12 y + z = 18 y + z = 24 y + z = 30 y + z = 36 y + z = 42	4) and $y + z = 6x$ n = 77.0 = 77 n = 39.5 = 40 n = 26.6 = 27 n = 20.0 = 20 n = 16.1 = 16 n = 13.4 = 13 n = 11.5 = 12	Parameter $(329nx-1)$ $x = 1$ $x = 2$ $x = 3$ $x = 4$ $x = 5$ $x = 6$ $x = 7$	ters in eq. 4-6 +17n = 24954) a y + z = 6.5 y + z = 13 y + z = 19.5 y + z = 26 y + z = 32.5 y + z = 39 y + z = 45.5	$ \begin{array}{l} \text{and } y + z = (13/2)x \\ n = 72.1 \rightleftharpoons 72 \\ \hline n = 37.0 \rightleftharpoons 37 \\ n = 24.9 \rightleftharpoons 25 \\ n = 18.7 \rightleftharpoons 19 \\ n = 15.0 \rightleftharpoons 15 \\ \hline n = 12.5 \rightleftharpoons 13 \\ n = 10.8 \rightleftharpoons 11 \\ \end{array} $
Parame ($307nx$ x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 Parame	ters in eq. 4-5 + $17n = 2495$ y + z = 6 y + z = 12 y + z = 18 y + z = 24 y + z = 30 y + z = 36 y + z = 42 ters in eq. 4-7	4) and $y + z = 6x$ n = 77.0 = 77 n = 39.5 = 40 n = 26.6 = 27 n = 20.0 = 20 n = 16.1 = 16 n = 13.4 = 13 n = 11.5 = 12	Parametric $(329nx-1)$ $x = 1$ $x = 2$ $x = 3$ $x = 4$ $x = 5$ $x = 6$ $x = 7$	ters in eq. 4-6 +17n = 24954) a y + z = 6.5 y + z = 13 y + z = 19.5 y + z = 26 y + z = 32.5 y + z = 39 y + z = 45.5	$\begin{array}{l} \text{and } y + z = (13/2)x \\ n = 72.1 \rightleftharpoons 72 \\ n = 37.0 \rightleftharpoons 37 \\ n = 24.9 \rightleftharpoons 25 \\ n = 18.7 \rightleftharpoons 19 \\ n = 15.0 \rightleftharpoons 15 \\ n = 12.5 \rightleftharpoons 13 \\ n = 10.8 \rightleftharpoons 11 \end{array}$
Parame ($307nx$) x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 Parame ($351nx$)	ters in eq. 4-5 + $17n = 2495$ y + z = 6 y + z = 12 y + z = 18 y + z = 24 y + z = 30 y + z = 36 y + z = 42 ters in eq. 4-7 + $17n = 2495$	4) and $y + z = 6x$ n = 77.0 = 77 n = 39.5 = 40 n = 26.6 = 27 n = 20.0 = 20 n = 16.1 = 16 n = 13.4 = 13 n = 11.5 = 12 4) and $y + z = 7x$	Parametric $(329nx-1)$ $x = 1$ $x = 2$ $x = 3$ $x = 4$ $x = 5$ $x = 6$ $x = 7$	ters in eq. 4-6 +17n = 24954) a y + z = 6.5 y + z = 13 y + z = 19.5 y + z = 26 y + z = 32.5 y + z = 39 y + z = 45.5	and $y + z = (13/2)x$ n = 72.1 = 72 n = 37.0 = 37 n = 24.9 = 25 n = 18.7 = 19 n = 15.0 = 15 n = 12.5 = 13 n = 10.8 = 11
Parame ($307nx$ x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 Parame ($351nx$ x = 1	ters in eq. 4-5 + 17n = 2495 y + z = 6 y + z = 12 y + z = 18 y + z = 24 y + z = 30 y + z = 36 y + z = 42 ters in eq. 4-7 + 17n = 2495 y + z = 7	4) and $y + z = 6x$ n = 77.0 = 77 n = 39.5 = 40 n = 26.6 = 27 n = 20.0 = 20 n = 16.1 = 16 n = 13.4 = 13 n = 11.5 = 12 4) and $y + z = 7x$ n = 67.8 = 68	Parameter (329nx-x = 1) $x = 2$ $x = 3$ $x = 4$ $x = 5$ $x = 6$ $x = 7$	ters in eq. 4-6 +17n = 24954) a y + z = 6.5 y + z = 13 y + z = 19.5 y + z = 26 y + z = 32.5 y + z = 39 y + z = 45.5	and $y + z = (13/2)x$ n = 72.1 = 72 n = 37.0 = 37 n = 24.9 = 25 n = 18.7 = 19 n = 15.0 = 15 n = 12.5 = 13 n = 10.8 = 11
Parame ($307nx$ x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 Parame ($351nx$ x = 1 x = 2	ters in eq. 4-5 + 17n = 2495 y + z = 6 y + z = 12 y + z = 18 y + z = 24 y + z = 30 y + z = 36 y + z = 42 ters in eq. 4-7 + 17n = 2495 y + z = 7 y + z = 14	4) and $y + z = 6x$ n = 77.0 = 77 n = 39.5 = 40 n = 26.6 = 27 n = 20.0 = 20 n = 16.1 = 16 n = 13.4 = 13 n = 11.5 = 12 4) and $y + z = 7x$ n = 67.8 = 68 n = 34.7 = 35	Parametric $(329nx-x)$ $x = 1$ $x = 2$ $x = 3$ $x = 4$ $x = 5$ $x = 6$ $x = 7$	ters in eq. 4-6 +17n = 24954) a y + z = 6.5 y + z = 13 y + z = 19.5 y + z = 26 y + z = 32.5 y + z = 39 y + z = 45.5	and $y + z = (13/2)x$ n = 72.1 = 72 n = 37.0 = 37 n = 24.9 = 25 n = 18.7 = 19 n = 15.0 = 15 n = 12.5 = 13 n = 10.8 = 11
Parame ($307nx$ x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 Parame ($351nx$ x = 1 x = 2 x = 3	ters in eq. 4-5 + 17n = 2495 y + z = 6 y + z = 12 y + z = 18 y + z = 24 y + z = 30 y + z = 36 y + z = 42 ters in eq. 4-7 + 17n = 2495 y + z = 7 y + z = 14 y + z = 21	4) and $y + z = 6x$ n = 77.0 = 77 n = 39.5 = 40 n = 26.6 = 27 n = 20.0 = 20 n = 16.1 = 16 n = 13.4 = 13 n = 11.5 = 12 4) and $y + z = 7x$ n = 67.8 = 68 n = 34.7 = 35 n = 23.3 = 23	Parametric $(329nx-x)$ $x = 1$ $x = 2$ $x = 3$ $x = 4$ $x = 5$ $x = 6$ $x = 7$	ters in eq. 4-6 +17n = 24954) a y + z = 6.5 y + z = 13 y + z = 19.5 y + z = 26 y + z = 32.5 y + z = 39 y + z = 45.5	and $y + z = (13/2)x$ n = 72.1 = 72 n = 37.0 = 37 n = 24.9 = 25 n = 18.7 = 19 n = 15.0 = 15 n = 12.5 = 13 n = 10.8 = 11
Parame ($307nx$ x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 Parame ($351nx$ x = 1 x = 2 x = 3 x = 4	ters in eq. 4-5 + 17n = 2495 y + z = 6 y + z = 12 y + z = 18 y + z = 24 y + z = 30 y + z = 36 y + z = 42 ters in eq. 4-7 + 17n = 2495 y + z = 7 y + z = 14 y + z = 21 y + z = 28	4) and $y + z = 6x$ n = 77.0 = 77 n = 39.5 = 40 n = 26.6 = 27 n = 20.0 = 20 n = 16.1 = 16 n = 13.4 = 13 n = 11.5 = 12 4) and $y + z = 7x$ n = 67.8 = 68 n = 34.7 = 35 n = 23.3 = 23 n = 17.6 = 18	Parameter (329nx-x = 1) $x = 1$ $x = 2$ $x = 3$ $x = 4$ $x = 5$ $x = 6$ $x = 7$	ters in eq. 4-6 +17n = 24954) a y + z = 6.5 y + z = 13 y + z = 19.5 y + z = 26 y + z = 32.5 y + z = 39 y + z = 45.5	and $y + z = (13/2)x$ n = 72.1 = 72 n = 37.0 = 37 n = 24.9 = 25 n = 18.7 = 19 n = 15.0 = 15 n = 12.5 = 13 n = 10.8 = 11
Parame ($307nx$ x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 Parame ($351nx$ x = 1 x = 2 x = 3 x = 4 x = 5	ters in eq. 4-5 + 17n = 2495 y + z = 6 y + z = 12 y + z = 18 y + z = 24 y + z = 30 y + z = 36 y + z = 42 ters in eq. 4-7 + 17n = 2495 y + z = 7 y + z = 7 y + z = 14 y + z = 21 y + z = 28 y + z = 35	4) and $y + z = 6x$ n = 77.0 = 77 n = 39.5 = 40 n = 26.6 = 27 n = 20.0 = 20 n = 16.1 = 16 n = 13.4 = 13 n = 11.5 = 12 4) and $y + z = 7x$ n = 67.8 = 68 n = 34.7 = 35 n = 23.3 = 23 n = 17.6 = 18 n = 14.0 = 14	Parameter (329nx-x = 1) x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7	ters in eq. 4-6 +17n = 24954) a y + z = 6.5 y + z = 13 y + z = 19.5 y + z = 26 y + z = 32.5 y + z = 39 y + z = 45.5	and $y + z = (13/2)x$ n = 72.1 = 72 n = 37.0 = 37 n = 24.9 = 25 n = 18.7 = 19 n = 15.0 = 15 n = 12.5 = 13 n = 10.8 = 11
Parame ($307nx$ x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 Parame ($351nx$ x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7	ters in eq. 4-5 + 17n = 2495 y + z = 6 y + z = 12 y + z = 18 y + z = 24 y + z = 30 y + z = 36 y + z = 42 ters in eq. 4-7 + 17n = 2495 y + z = 7 y + z = 14 y + z = 21 y + z = 28 y + z = 35 y + z = 42	4) and $y + z = 6x$ n = 77.0 = 77 n = 39.5 = 40 n = 26.6 = 27 n = 20.0 = 20 n = 16.1 = 16 n = 13.4 = 13 n = 11.5 = 12 4) and $y + z = 7x$ n = 67.8 = 68 n = 34.7 = 35 n = 23.3 = 23 n = 17.6 = 18 n = 14.0 = 14 n = 11.8 = 12	Parameter (329nx-x = 1) x = 2 x = 3 x = 4 x = 5 x = 6 x = 7	ters in eq. 4-6 +17n = 24954) a y + z = 6.5 y + z = 13 y + z = 19.5 y + z = 26 y + z = 32.5 y + z = 39 y + z = 45.5	and $y + z = (13/2)x$ n = 72.1 = 72 n = 37.0 = 37 n = 24.9 = 25 n = 18.7 = 19 n = 15.0 = 15 n = 12.5 = 13 n = 10.8 = 11

Note that, the sum of y + z is integer, if is non-integer that should be culled. All calculations allow the n value to be maximized. The gray rows were chosen to list in table 1, based on the x and n had supposed minimum and maximum value, respectively.

Details of yield analysis

(1)	If r = CH/CH2 = 12	39 HOCH ₂ CH ₂ OH	→ (repeating unit of NLPEG) ₃₉
_	(1) mole ratio	39	1
	(2) molecular weight	62	Mw = 2 kDa
	(3) mole	110.7/62 = 1.785 mmol	x
_	(4) yield (%)		Υ
	\Longrightarrow	39/1 = 1.785/X	
		X = 0.0458 mmol = 91.5 mg	
		Y = 22.6/91.5 x 100 % = 25 %	
(2)	If r = CH/CH2 = 12	572 HOCH ₂ CH ₂ OH	→ (repeating unit of NLPEG) ₅₇₂
_	(1) mole ratio	572	1
	(2) molecular weight	62	Mw = 25 kDa
	(3) mole	110.7/62 = 1.785 mmol	x
_	(4) yield (%)		Υ
	\Rightarrow	572/1 = 1.785/X	
		X = 3.121x10 ⁻³ mmol = 78.0 mg	

 $Y = 23.1/78.0 \times 100 \% = 30 \%$

Figure S3 AFM image of NLPEG.

Figure S4 The experiment of protein resistance was performed by the adsorption of FITC conjugated BSA on SiN wafer with pre-grafted various polymers from left to right including: SiN alone, PDMS, LPEG (1 kDa), LPEG (6 kDa), star-PEG and our NLPEG (2 kDa). To compare the pictures, the fluorescence intensity of our NLPEG is closer to background intensity (black area of each picture).

Figure S5 MALDI-TOF mass spectra of a lysozyme on a hydrophilic SiN which was premodified various polymers including PDMS, LPEG (1k), LPEG (6k), commercial star-PEG and NLPEG. As a result, no significant difference appears in various polymer coatings, except for PDMS coating. This result illustrates that our NLPEG can repel lysozyme as well as other PEG. Matrix: sinapinic acid.