Supporting information for

Fabrication of conducting polypyrrole/β-cyclodextrin nano- and micro-spheres using molecular templates

Songmin SHANG*, Wei ZENG, Xiao-ming TAO

Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong E-mail: <u>tcshang@inet.polyu.edu.hk</u>

SEM analyses of FeCl₃/pyrrole composites

In general, the oxidative polymerization of pyrrole is a function of the monomer and oxidant concentrations, solvent, reaction time and temperature, and the optimum molar ratio of FeCl₃/pyrrole for the polymerization of pyrrole by FeCl₃ has been suggested to be approximately 2.33:1(S. P. Armes, Synth. Met., 1987). We had investigated the effect of FeCl₃ content on morphological of the PPy/ β -CD composites by using a FeCl₃/pyrrole molar ratio of 2.33:1. Figure S1 revealed that the sample was composed of the nano- and micro-sphere and irregular particle, and the products should be a mixture of both pure PPy particles and PPy/ β -CD spheres.

Figure S1. The SEM images of PPy/β-CD composites

Figure S2. Plots of $Ln\sigma$ as functions of T^{1} . (a) PPy particals, and the prepared conducting PPy/ β -CD spheres with different amount of β -CD, (b) 1.0 mmol, (c) 2.0 mmol, and (d) 2.5 mmol.

Figure S3. Plots of $Ln\sigma$ as functions of $T^{1/2}$. (a) PPy particals, and the prepared conducting PPy/ β -CD spheres with different amount of β -CD, (b) 1.0 mmol, (c) 2.0 mmol, and (d) 2.5 mmol.

Figure S4. Plots of $Ln\sigma$ as functions of $T^{1/3}$. (a) PPy particulas, and the prepared conducting PPy/ β -CD spheres with different amount of β -CD, (b) 1.0 mmol, (c) 2.0 mmol, and (d) 2.5 mmol.