Supporting Information for:

Exploiting the use of ionic liquids to access phosphorodiamidites

Kerri Crossey,^a Christopher Hardacre,^{a,*} Marie E. Migaud,^{b,*} and Sarah E. Norman^a

 ^a QUILL and School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, Northern Ireland, BT9 5AG. Fax: +442890874687; E-mail: c.hardacre@qub.ac.uk
^b School of Pharmacy, 97 Lisburn Road, Queen's University Belfast, Belfast, BT9 7BL. Fax: +; E-mail:m.migaud@qub.ac.uk

Figure S1

(a) ${}^{31}P$ NMR, (b) ${}^{1}H$ NMR and (c) ${}^{13}C$ NMR spectra of 2-cyanoethyl-*N*,*N*,*N'*,*N'*-ethylmethylphosphoramidite, **3b**, following extraction with diethyl ether. The ${}^{31}P$ - NMR chemical shifts for all spectra were recorded in parts per million (ppm) relative to an external probe using a sealed capillary containing triethylphosphonate (PO(OEt)₃) in d₆-DMSO (solvent used for locking/shimming optimization) inside the NMR tube. The PO(OEt)₃ probe was referenced to 0.2 ppm. The ${}^{1}H$ NMR and ${}^{13}C$ NMR were recorded in CDCl₃ referenced to 0.00 ppm using TMS for the ${}^{1}H$ NMR and 77.0 ppm for the ${}^{13}C$ NMR.

(a)

(b)

(c)

Figure S2

(a) ³¹P NMR, (b) ¹H NMR and (c) ¹³C NMR spectra of bis-(pyrrolidino)-2-cyanoethoxyphosphite, **3d**, following extraction with diethyl ether. The ³¹P- NMR chemical shifts for all spectra were recorded in parts per million (ppm) relative to an external probe using a sealed capillary containing triethylphosphonate (PO(OEt)₃) in DMSO (solvent used for locking/shimming optimization) inside the NMR tube. The PO(OEt)₃ probe was referenced to 0.2 ppm. The ¹H NMR and ¹³C NMR were recorded in CDCl₃ referenced to 0.00 ppm using TMS for the ¹H NMR and 77.0 ppm for the ¹³C NMR.

(a)

Figure S3

(a) ¹H NMR, (b) ¹³C NMR and (c) ³¹P NMR spectra following the large scale synthesis of bis-(morpholino)-2-cyanoethoxyphosphite, **3c**. The ³¹P NMR, ¹H NMR and ¹³C NMR were recorded in CDCl₃ referenced to 0.00 ppm using TMS for the ¹H NMR and 77.0 ppm for the ¹³C NMR.

Figure S4

(a) ³¹P NMR spectra of *N*,*N*,*N*',*N*'-tetraisopropylphosphoramidite, **3a**, as obtained from Aldrich and (b)³¹P NMR spectra of *N*,*N*,*N*',*N*'-tetraisopropylphosphoramidite, **3a**, following synthesis in $[C_4mpyrr][NTf_2]$ and subsequent distillation. The ³¹P- NMR chemical shifts were recorded in parts per million (ppm) relative to an external probe using a sealed capillary containing triethylphosphonate (PO(OEt)₃) in DMSO (solvent used for locking/shimming optimization) inside the NMR tube. The PO(OEt)₃ probe was referenced to 0.2 ppm.

(a)

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2012

(b)

Table S5

 31 P NMR data for the compounds observed. The 31 P-NMR chemical shifts were recorded in parts per million (ppm) relative to an external probe (sealed capillary inside the NMR tube) of triethylphosphonate (PO(OEt)₃ in d₆-DMSO (solvent used for locking/shimming optimisation. Literature data is shown in parentheses.

	$^{i}\mathrm{Pr}_{2}\mathrm{NH}\left(\mathbf{a}\right)$	EtMeNH (b)	Morpholine (c)	Pyrrolidine (d)
PCl ₃	220(219) ¹			
$P(OR)Cl_2(1)$	$179(179)^2$			
$P(OR)_2Cl(2)$	$164 (165)^2$			
$P(OR)(NR'_{2})_{2}(3)$	$123(123)^3$	135 ⁴	131(131) ⁵	133 ⁴
$P(OR)_2(NR'_2)$ (4)	$149(150)^6$	146 ⁴	1424	143 ⁴
$P(O)(R)(NR'_2)_2(6)^*$	33 ⁶	316	30 ⁶	29 ⁶
P(OR)(NR' ₂)Cl (7)	181(179) ⁷	Not observed	Not observed	Not observed

*The corresponding *N*,*N*,*N*',*N*'-tetraethylphosphonic diamide derivative is reported at 31.9 ppm.⁸

4a LRMS (ES, $M + Na^+$) calculated for $C_{12}H_{22}N_3O_2PNa$ 294.13, found 294.13

4b LRMS (ES, $M + H^+$) calculated for C₉H₁₇N₃O₂P 230.10, found 230.11

4c LRMS (ES, $M + H^+$) calculated for $C_{10}H_{17}N_3O_3P$ 258.10, found 258.10

4d LRMS (ES, $M + H^+$) calculated for $C_{10}H_{17}N_3O_2P$ 242.10, found 242.14

References

- ¹ CRC Handbook of Phosphorus-31 Nuclear Magnetic Resonance Data, J. C. Tebby, 1991, CRC Press.
- ² P. R. J. Gaffney and C. B. Reese, J. Chem. Soc., Perkin Trans. 1, 2001, 192-205
- ³ R. Gukathasan, M. Massoudipour, I. Gupta, A. Chowdhury, S. Pulst, S. Ratman, Y. S. Sanghvi and S. A Laneman, *J. Organomet. Chem.*, 2005, **690**, 2603-2607
- ⁴ No literature data
- ⁵ R. Kierzek and W. T. Markiewicz, Nucleosides, Nucleotides and Nucleic Acids, 1991, 10, 6, 1257-1275
- ⁶ E. Uhlmann and J. Engers, *Tetrahedron Lett.*, 1986, **27**, 9, 1023-1026
- ⁷ C. Monti, C. Gennari., R. M. Steele and U. Piarulli, Eur. J. Org. Chem., 2004, 3557-3565
- ⁸ J. Neilsen, J. E. Marugg, J. H. Van Boom, J. Honnens, M. Taagaard and O. Dahl, J. Chem. Res., 1986, 26-27