Electronic Supplementary Information (ESI)

Simple one-pot fabrication of ultra-stable core-shell superparamagnetic

nanoparticles for potential application in drug delivery

Tapas Sen^{a,b*}, Sarah J. Sheppard^{a,c}, Tim Mercer^d, Maneea Eizadi-sharifabad^a, Morteza Mahmoudi^{e,f} and Abdelbary Elhissi^c

^aCentre for Materials Science, School of Forensic and Investigative Sciences

^bInstitute of Nanotechnology and Bioengineering

^cSchool of Pharmacy and Biomedical Sciences

^dSchool of Computing Engineering and Physical Sciences

^eNanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

^fNanoBio Interactions Laboratory, National Cell Bank, Pasteur Institute of Iran, Tehran, Iran

University of Central Lancashire Preston, PR1 2HE United Kingdom

*Corresponding author

Email: tsen@uclan.ac.uk Telephone: +44 1772 89 4371 Fax: +44 1772 89 4981.

Figure S1. Standard curve of Mitomycin C in water

Figure S2. Standard curve of Mitomycin C in PBS buffer

Figure S3. XRD pattern of SPIONs core

Materials	Time (hr)	MMC Conc. (µg/mL)	Conc. of	MMC remaining	Fraction of	MMC extracted	% MMC	MMC loaded (µg
			nanomaterials	in the solution	MMC remaining	from solution	extracted from	MMC/mg of
			(mg/mL)	(ug/mL)	in the solution	(ug)	solution	materials)
SS068	0.5	71	4	69	0.972	2	2.8	0.7
	1	71	4	68	0.958	3	4.2	1.1
	2	71	4	68	0.958	3	4.2	1.1
	3	71	4	67	0.944	4	5.6	1.4
	6	71	4	66	0.929	5	7.0	1.8
	10	71	4	64	0.901	7	9.9	2.5
	24	71	4	63	0.887	8	11.3	2.8
	48	71	4	63	0.887	8	11.3	2.8
	0.5	71	4	70	0.986	1	1.4	0.4
	1	71	4	68	0.958	3	4.2	1.1
	2	71	4	51	0.718	20	26.8	6.7
SS065	3	71	4	49	0.690	22	28.2	7.1
	6	71	4	48	0.676	23	31.0	7.8
	10	71	4	47	0.662	24	32.4	8.1
	24	71	4	47	0.662	24	32.4	8.1
	48	71	4	47	0.662	24	32.4	8.1
	0.5	71	4	70	0.986	1	1.4	0.4
	1	71	4	69	0.972	2	2.8	0.7
	2	71	4	67	0.944	4	5.6	1.4
SS069	3	71	4	67	0.944	4	5.6	1.4
	6	71	4	66	0.929	5	7.0	1.8
	10	71	4	54	0.761	17	23.9	6.0
	24	71	4	41	0.577	30	42.3	10.6
	48	71	4	40	0.564	31	43.7	10.9
SS073	0.5	71	4	70	0.986	1	1.4	0.4
	1	71	4	69	0.972	2	2.8	0.7
	2	71	4	69	0.972	2	2.8	0.7
	3	71	4	69	0.972	2	2.8	0.7
	6	71	4	69	0.972	2	2.8	0.7
	10	71	4	66	0.929	5	7.0	3.5
	24	71	4	66	0.929	5	7.0	3.5
	48	71	4	66	0.929	5	7.0	3.5

Table S1. Loading data of Mitomycin C in water (pH = 6.8) at $25^{0}C$

Matariala	MMC loaded (µg	Time	MMC Conc. released	MMC released (µg	% MMC released /mg	Fraction of MMC
wraterrals	MMC/mg of materials)	(hr)	in solution (µg/mL)	MMC/mg of materials)	of materials	released in the solution
SS068		0.5	0.63	0.16	5.7	0.057
		1	1.7	0.43	15.4	0.154
		2	1.7	0.43	15.4	0.154
	2.8	3	1.7	0.43	15.4	0.154
		6	1.7	0.43	15.4	0.154
		10	1.7	0.43	15.4	0.154
		24	1.7	0.43	15.4	0.154
		48	1.7	0.43	15.4	0.154
		0.5	2.2	0.55	6.8	0.068
		1	3.2	0.80	9.9	0.099
		2	5.2	1.30	16.0	0.160
SS065	Q 1	3	8.5	2.10	25.9	0.259
	0.1	6	14.6	3.70	45.7	0.457
		10	21	5.30	65.4	0.654
		24	23.3	5.80	71.6	0.716
		48	23.3	5.80	71.6	0.716
		0.5	2.1	0.53	4.9	0.049
		1	2.5	0.63	5.8	0.058
		2	3.7	0.93	8.5	0.085
\$\$060	10.9	3	5.8	1.45	13.3	0.133
32009	10.9	6	8.7	2.18	20.0	0.200
		10	11.2	2.80	25.7	0.257
		24	13.4	3.35	30.7	0.307
		48	14.7	3.68	33.8	0.338
SS073		0.5	1.2	0.30	8.6	0.086
		1	2.2	0.55	15.7	0.157
		2	2.7	0.68	19.4	0.194
	3.5	3	2.8	0.70	20.0	0.200
	5.5	6	2.8	0.70	20.0	0.200
		10	2.8	0.70	20.0	0.200
		24	2.8	0.70	20.0	0.200
		48	2.8	0.70	20.0	0.200

Table S2.	Releasing	data of Mitomy	ycin C in PBS	S buffer (pH = 7.2)	at 25° C
-----------	-----------	----------------	---------------	------------	-----------	-------------------