Supplementary Information

From "Improvement of transport properties and hydrogen permeation of chemicallystable proton conducting oxides bases on the system $BaZr_{1-x-y}Y_xM_yO_{3-\delta}$ " by Sonia Escolástico¹, Mariya Ivanova², Cecilia Solís¹, Stefan Roitsch³, Wilhelm A. Meulenberg², José M. Serra^{1,*}

¹Instituto de Tecnología Química (Universidad Politécnica de Valencia – Consejo Superior de Investigaciones Científicas), Av. Naranjos s/n, E-46022 Valencia (SPAIN)

²Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research-IEK-1,

Leo-Brandt-Str. 1, D-52425 Jülich, Germany

³ Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, RWTH Aachen University, Ahornstr. 55, 52074 Aachen, Germany

Figure S1: Total conductivity against inverse of temperature in dry helium, helium saturated with water and helium saturated with deuterated water at room temperature of $BaZr_{0.95}Y_{0.1}O_{3-\delta}$, $BaZr_{0.85}Y_{0.1}Pr_{0.05}O_{3-\delta}$, $BaZr_{0.85}Y_{0.1}Fe_{0.05}O_{-\delta}$, $BaZr_{0.85}Y_{0.1}Mn_{0.05}O_{3-\delta}$, $BaZr_{0.8}Y_{0.15}Mn_{0.05}O_{3-\delta}$.

Figure S2 shows impedance spectra of the $BaZr_{0.8}Y_{0.15}Mn_{0.05}O_{3-\delta}$ sample, recorded at 300 °C in 4% H₂+Ar in dry (top) and wet (bottom) atmospheres. The open symbols represent the experimental data and lines the fits to a model with three in serie RQ elements. The three different contributions, observed at different frequencies, can be associated to different processes: (1) the high frequency semicircle (200-500 kHz) can be associated to the bulk resistivity (pseudo-capacitances of 5.9-6.0 x 10⁻¹¹ F); (2) a second high frequency contribution but lower frequencies than the first one (12-25 kHz) with pseudo-capacitances of 2.8-4.4 x 10⁻¹⁰ is not easily associated to the grain boundaries resistivity (pseudo-capacitances of 1.0-2.8 x 10⁻⁹ F). The most important contribution to the total sample resistance is the one related to grain boundary transport. Similar values of bulk and grain boundaries associated pseudo-capacitances have been observed by Ricote et al. [25, 26] for $BaZr_{0.9}Y_{0.1}O_{3-\delta}$ in 9% H₂+N₂+H₂O at 370 °C.