Supplementary Information

Selective Reduction of Visible Upconversion Emissions Induced by Bi^{3+} in Tm^{3+}/Yb^{3+} -doped $Y_{0.89-x}Bi_xVO_4$ Microcrystals

Chanchal Hazra^a, Shyam Sarkar^a and Venkataramanan Mahalingam^{a*}

^aDepartment of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, India

Fig. S1 SEM images of Tm(0.01)Yb(0.1)-doped $Y0_{.89-x}Bi_xVO_4$ microcrystals with x = 0 (A) and x = 0.89 (B).

Figure S2. Graph showing the logarithmic plot of upconversion intensity verses laser power. The obtained slope results are shown in the inset.

Fig. S3 UV-Vis absorbance spectra of Tm(1%)Yb(10%)-doped YVO₄ and BiVO₄ nanocrystals. The strong absorption near 280 nm is due to VO₄³⁻ group.

Fig. S4 Upconversion emission spectrum showing the strong emissions from Er/Yb-doped BiVO₄ microcrystals. Inset shows the digital image of the green emission upon exciting with 980 nm diode laser (laser mount is also shown).

Fig. S5 XRD patterns of $\text{Tm}^{3+}(0.01)$ -doped $\text{Yb}_{0.89-x}\text{Bi}_x\text{VO}_4$ microcrystals suggesting there is no phase separation upon Bi^{3+} doping upto 25% Bi^{3+} doping.

Fig. S6 Raman spectra of $\text{Tm}^{3+}(0.01)$ -doped $\text{Yb}_{0.89-x}\text{Bi}_x\text{VO}_4$ microcrystals indicating there is no phase separation upon Bi^{3+} doping upto 25% Bi^{3+} doping.

Fig. S7 Decay curves of ${}^{1}G_{4}$ level (475 nm) of Tm³⁺ ions in Tm(0.01)Yb(0.1)-doped Y0₈₉. _xBi_xVO₄ microcrystals (x = 0 to 89).

Fig. S8 The CIE color coordinate diagram indicating the positions of the co-ordinates calculated for Tm(1%)Yb(10%)-doped $Y_{89\%-x}Bi_xVO_4$ (x = 0, 50, 75 and 89%) nanocrystals and the corresponding colours the human eye perceives. For clarity, the coordinate positions for only few samples are shown.