Copper-Mediated Synthesis of N-fused Heterocycles via Csp-S Coupling Reaction and 5-endo-dig Cyclization Sequence (Supporting Information)

Dongmei Xiao[†], Liqiang Han[†], Qi Sun^{†,}*, Qianxi Chen[§], Ningbo Gong[§], Yang $Lv^{\$}$, Franck Suzenet[†], Gerald Guillaumet[†], Tieming Cheng[†], Runtao Li^{†,}*

[†] State key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China

[§] Institute of Materia Medica (IMM), Chinese Academy of Medical Sciences & Peking Union Medical College

[‡] Institut de Chimie Organique et Analytique, Université d'Orléans, UMR-CNRS 6005, rue de Chartres, BP 6759, 45067 Orléans cedex 2, France

E-mail: sunqi@bjmu.edu.cn.

Telphone: (+86)10-82801504

CONTENTS:

General Informations ······S2
Experimental Procedures and Characterization of Products ·······S2
References ······ S12
X-ray of compound $2a \cdots S13$
¹ H NMR, ¹³ C NMR spectra of these Compounds

1. General Information

All manipulations were conducted with a standard Schlenk technique under air atmosphere. ¹H-NMR spectra were recorded with a Bruker AVIII-400 spectrometer. Chemical shifts (in ppm) were referenced to tetramethylsilane ($\delta = 0$ ppm) in CDCl₃ ($\delta = 7.26$ ppm) or d₆-DMSO ($\delta = 2.50$ ppm) as an internal standard. ¹³C-NMR spectra were obtained by the same NMR spectrometer and were calibrated with CDCl₃ ($\delta = 77.00$ ppm) or d₆-DMSO ($\delta = 39.50$ ppm). High-resolution mass spectra were recorded by APEX IV Fourier Transform Ion Cyclotron Resonance Mass Spectrometer spectrometer in ESI. Silica gel (200-300 mesh) was used for column chromatography. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. All solvents were used as received. All reactions were carried out without taking precautions to exclude air and moisture. Dihydropyrimidine-2-thiones **4a-4n** were synthesized by the well-known Bignelli's one-pot condensation reaction¹. ICy•HCl was synthesized according to the literature².

2. Experimental procedure and characterization of products

A General procedure for Csp-S coupling reaction and 5-endo-dig cyclization.

To a 25 mL flask was added toluene (10 mL), Et₃N (0.71 mL, 5mmol), CuCl (198mg, 2mmol), ICy•HCl (537mg, 2mmol) sequentially. The formed mixture was stirred at room temperature for 2 hours. After 2 hours, compound **3** (1mmol), compound **8a** (2mmol) were added. Then the reaction mixture was stirred at 110 °C for 24 hours as monitored by TLC. For work-up, after cooling down to the room temperature and concentrating in *vacuo*, the residue was purified by flash chromatograph on silica gel (eluent: petroleum ether / ethyl acetate = 4:1) to afford the product.

3-phenylbenzo[d]thiazolo[3,2-a]imidazole (1a)

Obtained as a white solid in 74% yield, mp 138~140 °C (Lit. 138-140°C³). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.2 Hz, 1H), 7.64 (dd, J = 7.1, 2.5 Hz, 2H), 7.59 – 7.50 (m, 3H), 7.35 – 7.28 (m, 1H), 7.22 (d, J = 8.2 Hz, 1H), 7.08 – 7.02 (m, 1H), 6.57 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 157.23, 148.77, 134.25,

130.11, 129.46, 128.90, 123.34, 120.39, 119.25, 111.67, 107.11; HRMS m/z (ESI) calcd for C₁₅H₁₁N₂S (M + H)⁺ 251.06375, found 251.06365.

3-p-tolylbenzo[d]thiazolo[3,2-a]imidazole (1b)

Obtained as a white solid in 61% yield, mp 117~118 °C(Lit. 138-140°C³). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.2 Hz, 1H), 7.53 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 7.9 Hz, 2H), 7.34 – 7.28 (m, 1H), 7.27 – 7.22 (m, 1H), 7.08 – 7.02 (m, 1H), 6.53 (s, 1H), 2.48 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 156.41, 147.93,

139.43, 133.50, 129.30, 128.78, 127.87, 125.66, 122.42, 119.45, 118.33, 110.89, 105.76, 20.63; HRMS m/z (ESI) calcd for $C_{16}H_{13}N_2S$ (M + H)⁺ 265.07940, found 265.07901.

3-(4-methoxyphenyl)benzo[d]thiazolo[3,2-a]imidazole (1c)

Obtained as a white solid in 42% yield, mp 148~150 °C (Lit. 148-150 °C³). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.2 Hz, 1H), 7.57 (d, J = 8.7 Hz, 2H), 7.31 (t, J = 7.7 Hz, 1H), 7.27 – 7.23 (m, 1H), 7.06 (t, J = 8.8 Hz, 3H), 6.51 (s, 1H), 3.92 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.99, 157.22, 148.80, 134.09, 130.31, 123.27, 121.63, 120.32, 119.20, 114.37, 111.64, 106.29, 55.48, 1.02;

HRMS m/z (ESI) calcd for C₁₆H₁₃N₂OS (M + H)⁺ 281.07431, found 281.07361.

3-(4-fluorophenyl)benzo[d]thiazolo[3,2-a]imidazole (1d)

Cobtained as a white solid in 44% yield, mp 145~147 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.2 Hz, 1H), 7.68 – 7.61 (m, 2H), 7.33 (t, J = 7.7 Hz, 1H), 7.30 – 7.24 (m, 2H), 7.17 (d, J = 8.2 Hz, 1H), 7.07 (t, J = 7.7 Hz, 1H), 6.58 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 165.00, 157.08, 148.78, 133.10, 130.89, 130.01, 125.53, 123.45, 120.52, 119.37, 116.35, 116.13, 111.38,

107.38, 1.02; HRMS m/z (ESI) calcd for C₁₅H₁₀FN₂S (M + H)⁺ 269.05432, found 269.05427. Anal. calcd for C₁₅H₉FN₂S: C 67.15, H 3.38, N 10.44; found C 67.12, H 3.38 N 10.46.

3-(thiophen-2-yl)benzo[d]thiazolo[3,2-a]imidazole (1e)

Obtained as a white solid in 63% yield, mp 93~95 °C(Lit. 94-95°C³). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.2 Hz, 1H), 7.56 (dd, J = 5.2, 1.1 Hz, 1H), 7.45 (dd, J = 3.6, 1.1 Hz, 1H), 7.34 (dt, J = 8.3, 4.7 Hz, 2H), 7.25 (dd, J = 3.1, 2.0 Hz, 1H), 7.14 **1e** - 7.08 (m, 1H), 6.72 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ

156.52, 148.65, 130.07, 129.56, 129.06, 128.11, 127.72, 127.02, 123.49, 120.62, 119.30, 111.50, 109.42; HRMS m/z (ESI) calcd for $C_{13}H_9N_2S_2$ (M + H)⁺ 257.02017, found 257.01989.

3-(pyridin-3-yl)benzo[d]thiazolo[3,2-a]imidazole (1f)

136.00, 130.77, 129.84, 125.69, 123.54(d), 120.73, 119.41, 111.18, 109.00; HRMS m/z (ESI) calcd for C₁₄H₁₀N₃S (M + H)⁺ 252.05899, found 252.05851; Anal. calcd for C₁₄H₉N₃S: C 66.91, H 3.61, N 16.72; found C 66.92, H 3.66, N 16.77.

Methyl 7-methyl-3,5-diphenyl-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate (2a)

Obtained as a yellow solid in 75% yield, mp 166~167 °C⁴. ¹H NMR (400 MHz, DMSO) δ 7.58 (d, J = 7.4 Hz, 1H), 7.49 (t, J = 7.5 Hz, 2H), 7.43 (s, 1H), 7.29 (d, J = 7.2 Hz, 2H), 7.22 (t, J 2a = 7.3 Hz, 1H), 7.14 (t, J = 7.5 Hz, 2H), 6.65 (d, J = 7.3 Hz,

2H), 6.36 (s, 1H), 3.59 (s, 3H), 2.48 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 165.03, 142.89, 140.32, 139.63, 131.01, 130.04, 129.73–128.93 (m), 127.68, 126.87, 111.93, 103.16, 59.30, 52.15, 18.17; HRMS *m*/*z* (ESI) calcd for C₂₁H₁₉N₂O₂S (M + H)⁺ 363.11617, found 363.11528.

Methyl 5-(3-fluorophenyl)-7-methyl-3-phenyl-5H-thiazolo[3,2-a] pyrimidine-6-carboxylate (2b)

2c

Obtained as a yellow solid in 98% yield, mp 142~144 °C. ¹H Ph NMR (400 MHz, CDCl₃) δ 7.43 (dt, J = 14.7, 7.2 Hz, 3H), 7.13 (d, J = 7.4 Hz, 2H), 7.03 (d, J = 6.5 Hz, 1H), 6.82 (d, J

= 8.2 Hz, 1H), 6.58 (d, J = 7.6 Hz, 1H), 6.45 (d, J = 9.6 Hz,

1H), 6.18 (d, J = 12.1 Hz, 2H), 3.62 (s, 3H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.06, 166.56, 163.69, 161.24, 156.43, 144.48, 139.63, 129.77, 129.39, 128.85, 122.04, 115.07, 113.57, 102.93, 100.45, 57.43, 50.97, 23.64; HRMS m/z (ESI) calcd for C₂₁H₁₈FN₂O₂S (M + H)⁺ 381.10675, found 381.10623. Anal. calcd for C₂₁H₁₇FN₂O₂S: C 66.30, H 4.50, N 7.36; found C 66.18, H 4.55, N 7.40.

Methyl 5-(3-chlorophenyl)-7-methyl-3-phenyl-5H-thiazolo[3,2-a] pyrimidine-6-carboxylate (2c)

S5

7.27 (s, 1H), 7.19 – 7.05 (m, 15H), 7.00 (t, J = 7.8 Hz, 5H), 6.75 – 6.59 (m, 10H), 6.19 (s, 5H), 6.12 (s, 5H), 3.62 (s, 14H), 2.45 (s, 15H); ¹³C NMR (101 MHz, CDCl₃) δ 166.03, 165.49, 155.49, 142.93, 138.60, 132.96, 128.80, 128.46, 127.86, 127.25, 125.74, 123.72, 101.96, 99.33, 56.55, 50.00, 22.69; HRMS *m/z* (ESI) calcd for C₂₁H₁₈ClN₂O₂S (M + H)⁺ 397.07720, found 397.07642.

Methyl 5-(3-bromophenyl)-7-methyl-3-phenyl-5H-thiazolo[3,2-a] pyrimidine-6-carboxylate (2d)

 \cap

Obtained as a yellow solid in 88% yield, mp 158~160 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 17.2 Hz, 2H), 7.23 (s, 1H), 7.11 (s, 1H), 6.94 (s, 1H), 6.74 (s, 1H), 6.15 (d, J = 31.7

^{2d} Hz, 2H), 3.61 (s, 2H), 2.45 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.99, 166.44, 156.49, 144.16, 139.57, 131.18, 130.03 – 129.43 (m), 129.36, 128.87, 125.23, 122.13, 102.98, 100.27, 57.55, 51.01, 23.68; HRMS *m/z* (ESI) calcd for C₂₁H₁₈BrN₂O₂S (M + H)⁺ 441.02669, found 441.02566. Anal. calcd for C₂₁H₁₇BrN₂O₂S: C 57.15, H 3.88, N 6.35; found C 57.01, H 3.90, N 6.30.

Methyl 5-(3-methoxyphenyl)-7-methyl-3-phenyl-5H-thiazolo[3,2-a] pyrimidine-6-carboxylate (2e)

(d, J = 7.5 Hz, 3H), 3.58 (d, J = 8.0 Hz, 3H), 2.45 (d, J = 4.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.17, 166.60, 159.28, 156.17, 143.56, 139.74, 129.60, 129.28 (s, 3H), 128.78, 118.76, 113.91, 111.61, 102.76, 100.76, 57.80, 54.95, 50.90, 23.60; HRMS *m*/*z* (ESI) calcd for C₂₂H₂₁N₂O₃S (M + H)⁺ 393.12674, found 393.12625. Anal. calcd for C₂₂H₂₀N₂O₃S: C 67.33, H 5.14, N 7.14; found C 67.13, H 5.21, N 7.08.

Methyl 7-methyl-5-(3-nitrophenyl)-3-phenyl-5H-thiazolo[3,2-a] pyrimidine-6-carboxylate (2f)

Methyl 5-(4-methoxyphenyl)-7-methyl-3-phenyl-5H-thiazolo[3,2-a] pyrimidine-6-carboxylate (2g)

Obtained as a yellow solid in 68% yield, mp 134~136 °C⁴. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (dt, J = 14.7, 7.2 Hz, ³H), 7.14 (d, J = 7.5 Hz, 1H), 6.68 (d, J = 8.5 Hz, 1H), 6.57 (d, J = 8.4 Hz, 1H), 6.12 (d, J = 14.8 Hz, 1H), 3.69 (s, 1H), ²g 3.60 (s, 1H), 2.45 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ

167.23, 166.45, 159.30, 155.81, 139.82, 134.71, 129.75, 129.52, 128.88, 128.65, 127.78, 113.50, 102.61, 101.18, 57.38, 55.08, 50.84, 23.56; HRMS m/z (ESI) calcd for C₂₂H₂₁N₂O₃S (M + H)⁺ 393.12674, found 393.12655.

Methyl 7-methyl-3-phenyl-5-p-tolyl-5H-thiazolo[3,2-a]pyrimidine-6carboxylate (2h)

Obtained as a yellow solid in 82% yield, mp 180~182 °C⁴.
¹H NMR (400 MHz, CDCl₃) δ 7.41 (dt, J = 22.4, 7.2 Hz,
¹ 2H), 7.12 (d, J = 7.0 Hz, 1H), 6.85 (d, J = 7.9 Hz, 1H), 6.66 (d, J = 8.0 Hz, 2H), 6.12 (d, J = 4.3 Hz, 2H), 3.59 (s, 3H),
2.44 (s, 3H), 2.19 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ

167.22, 166.62, 156.02, 139.80, 139.34, 137.77, 129.62, 128.90, 128.67, 126.37, 102.70, 101.08, 57.62, 50.89, 23.63, 21.09; HRMS m/z (ESI) calcd for $C_{22}H_{21}N_2O_2S$ (M + H)⁺ 377.13183, found 377.13124.

Methyl 5-(benzo[d][1,3]dioxol-5-yl)-7-methyl-3-phenyl-5H-thiazolo[3,2-a] pyrimidine-6-carboxylate (2i)

С 2i

Obtained as a yellow solid in 75% yield, mp 148~151 °C.¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 7.0 Hz, 1H), 7.07 (d, J = 5.6 Hz, 1H), 6.33 (d, J = 7.4 Hz, 0H), 6.25 (s, 0H), 6.07 (s, 0H), 6.02 (d, *J* = 13.5 Hz, 1H), 5.70 (s, 2H), 3.50 (s, 3H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.10, 166.36, 155.90, 147.50, 147.29, 139.66, 136.17, 129.60, 128.72, 119.98, 107.59, 107.00,

102.81, 100.93, 57.57, 50.86, 23.55; HRMS m/z (ESI) calcd for C₂₂H₁₉N₂O₄S (M + H)⁺ 407.10600, found 407.10498. Anal. calcd for C₂₂H₁₈N₂O₄S: C 65.01, H 4.46, N 6.89; found C 64.80, H 4.62, N 6.83.

Methyl 5-(2-methoxyphenyl)-7-methyl-3-phenyl-5H-thiazolo[3,2-a] pyrimidine-6-carboxylate (2j)

Obtained as a yellow solid in 67% yield, mp 143~146 $^{\circ}C^4$. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (dt, J = 14.0, 6.9 Hz, 1H), 7.06 (d, J = 6.1 Hz, 1H), 6.82 (d, J = 7.2 Hz, 0H), 6.59

(d, J = 5.6 Hz, 1H), 6.47 (s, 0H), 6.01 (s, 0H), 3.54 (s, 3H),3.38 (s, 3H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.47, 167.11, 156.48, 155.85, 140.20, 130.27, 129.67, 129.22, 128.82, 128.38, 120.06, 110.32, 102.00, 100.20, 55.06, 54.38, 50.72, 23.65; HRMS m/z (ESI) calcd for $C_{22}H_{21}N_2O_3S$ (M + H)⁺ 393.12674, found 393.12587.

Methyl 5-(2-bromophenyl)-7-methyl-3-phenyl-5H-thiazolo[3,2-a] pyrimidine-6-carboxylate (2k)

(s, 3H), 2.44 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.85, 156.02, 141.96, 139.77, 132.71, 129.59, 131.37 - 128.25, 129.93 - 128.25 (m), 129.33 - 127.74 (m), 121.38, 102.72, 101.03, 57.44, 50.61, 23.43; HRMS m/z (ESI) calcd for $C_{21}H_{18}BrN_2O_2S$ (M + H)⁺ 441.02669, found 441.02654. Anal. calcd for $C_{21}H_{17}BrN_2O_2S$: C 57.15, H 3.88, N 6.35; found C 56.97, H 3.93, N 6.33.

Methyl 5-(2-chlorophenyl)-7-methyl-3-phenyl-5H-thiazolo[3,2-a] pyrimidine-6-carboxylate (2l)

140.22, 139.88, 131.83, 130.30, 129.72, 129.50, 129.39 – 129.00 (m), 128.80, 127.21, 102.67, 100.69, 55.49, 50.79, 23.56; HRMS m/z (ESI) calcd for $C_{21}H_{18}CIN_2O_2S$ (M + H)⁺ 397.07720, found 397.07633. Anal. calcd for $C_{21}H_{17}CIN_2O_2S$: C 63.55, H 4.32, N 7.06; found C 63.62, H 4.33, N 7.07.

1-(7-methyl-3,5-diphenyl-5H-thiazolo[3,2-a]pyrimidin-6-yl)ethanone (2m)

Obtained as a yellow solid in 83% yield, mp 140~142 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (t, J = 7.3 Hz, 0H), 7.39 (t, J = 7.3 Hz, 1H), 7.15 – 7.03 (m, 2H), 6.80 (d, J = 6.9 Hz, 2H), 6.34 (s, 1H), 6.22 (s, 1H), 2.45 (s, 3H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.58, 165.64, 154.61, 140.95, 139.33,

128.71, 128.38, 127.82, 127.22 (s, 6H), 126.90, 125.43, 111.38, 102.15, 56.36, 30.43, 24.08; HRMS m/z (ESI) calcd for $C_{21}H_{19}N_2OS$ (M + H)⁺ 347.12126, found 347.12099.

Methyl 7-methyl-3-phenyl-5-(thiophen-2-yl)-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate (2n)

Obtained as a yellow solid in 63% yield, mp 162~163 °C. ^h ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.43 (m, 3H), 7.28 (dd, J = 7.3, 1.8 Hz, 2H), 7.04 (d, J = 5.0 Hz, 1H), 6.70 (dd, J = 4.9, 3.7 Hz, 1H), 6.50 (s, 1H), 6.35 (d, J = 3.2 Hz, 1H), 6.23 (d, J = 7.5 Hz, 1H), 3.67 (s, 3H), 2.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.93, 166.37, 156.67, 144.52, 139.37, 129.74, 129.31, 128.97, 128.66, 126.39, 125.45, 124.55, 103.25, 100.76, 52.61, 51.14, 23.43; HRMS *m*/*z* (ESI) calcd for C₁₉H₁₇N₂O₂S₂ (M + H)⁺ 369.07260, found 369.07214. Anal. calcd for C₁₉H₁₆N₂O₂S₂: C 61.93, H 4.38, N 7.60; found C 61.76, H 4.37, N 6.34.

Methyl 5-(3-chlorophenyl)-7-methyl-3-p-tolyl-5H-thiazolo[3,2-a]pyrimidine -6-carboxylate (20)

Obtained as a yellow solid in 55% yield, mp 157~160 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, J = 7.8 Hz, 2H), 7.10 (d, J = 8.0 Hz, 1H), 7.02 (t, J = 8.3 Hz, 3H), 6.73 (d, J = 7.6 Hz, 1H), 6.63 (s, 1H), 6.16 (s,

1H), 6.13 (s, 1H), 3.62 (s, 3H), 2.46 (s, 3H), 2.44 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 167.03, 166.50, 156.54, 143.98, 140.04, 139.70, 133.90, 129.51, 128.83, 128.17, 126.57, 124.68, 102.74, 102.46, 100.17, 57.58, 57.35, 50.89, 23.74, 21.30; HRMS *m*/*z* (ESI) calcd for C₂₂H₂₀ClN₂O₂S (M + H)⁺ 411.09285, found 411.09143. Anal. calcd for C₂₂H₁₉ClN₂O₂S: C 64.30, H 4.66, N 6.82; found C 64.21, H 4.71, N 6.77.

Methyl 5-(3-chlorophenyl)-3-(4-methoxyphenyl)-7-methyl-5H-thiazolo[3,2-a] pyrimidine-6-carboxylate (2p)

Obtained as a yellow solid in 67% yield, mp 186~188 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.10 – 7.06 (m, 1H), 7.01 (t, *J* = 7.8 Hz, 3H), 6.92 (d, *J* = 8.7 Hz, 2H), 6.71 (d, *J* = 7.7 Hz, 1H), 6.65 (t, *J* = 1.7 Hz,

1H), 6.13 (s, 1H), 6.08 (s, 1H), 3.85 (s, 3H), 3.60 (s, 3H), 2.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.04 (s, 1H), 166.47 (s, 1H), 160.71 (s, 2H), 156.58 (s, 1H), 144.08 (s, 2H), 139.41 (s, 1H), 133.89 (s, 2H), 130.40 (s, 7H), 129.58 (s, 4H), 128.20 (s, 4H), 126.74 (s, 3H), 124.74 (s, 4H), 121.53 (s, 2H), 114.18 (s, 7H), 102.44 (s, 4H), 100.06 (s, 2H), 57.49 (s, 4H), 55.45 (s, 4H), 51.01 (s, 3H),

23.71 (s, 3H); HRMS m/z (ESI) calcd for $C_{22}H_{20}ClN_2O_3S$ (M + H)⁺ 427.08777, found 427.08739. Anal. calcd for $C_{22}H_{19}ClN_2O_3S$: C 61.89, H 4.49, N 6.56; found C 62.10, H 4.58, N 6.47.

Methyl 5-(3-chlorophenyl)-3-(4-fluorophenyl)-7-methyl-5H-thiazolo[3,2-a] pyrimidine-6-carboxylate (2q)

Obtained as a yellow solid in 76% yield, mp 187~189 °C. ^O H NMR (400 MHz, CDCl₃) δ 7.14 – 7.02 (m, 5H), 6.98 (t, J = 8.0 Hz, 1H), 6.67 (s, 2H), 6.17 (s, 1H), 6.02 (s, 1H), 3.57 (s, 3H), 2.40 (s,3H); ¹³C NMR (101 MHz, CDCl₃) δ

166.90, 166.30, 164.67, 162.17, 156.36, 143.89, 138.39, 134.04, 130.98, 129.63, 128.33 126.61, 125.41, 124.61, 116.07, 115.85, 103.40, 100.28, 57.60, 51.03, 23.66; HRMS m/z (ESI) calcd for C₂₁H₁₇ClFN₂O₂S (M + H)⁺ 415.06778, found 415.06765. Anal. calcd for C₂₁H₁₆ClFN₂O₂S: C 60.79, H 3.89, N 6.75; found C 60.89, H 3.89, N 6.79.

Methyl 3-butyl-5-(3-chlorophenyl)-7-methyl-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate (2r)

Obtained as a yellow solid in 67% yield, mp 110~112 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, *J* = 19.1 Hz, 3H), 7.18 (s, 1H), 6.19 (s, 1H), 5.99 (s, 1H), 3.74 (s, 3H), 2.38 (s, 3H), 1.89 (d, *J* = 56.1 Hz, 2H), 1.49 – 1.29 (m, 4H),

0.91 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.19, 156.79, 144.84 – 144.62 (m), 139.57, 134.89 – 134.50 (m), 130.09, 128.41, 126.30, 124.31, 106.90, 99.89, 57.02, 51.06, 32.79, 28.90, 27.06, 22.05, 13.69; HRMS m/z (ESI) calcd for C₁₉H₂₂ClN₂O₂S (M + H)⁺ 377.10850, found 377.10801. Anal. calcd for C₁₉H₂₁ClN₂O₂S: C 60.55, H 5.62, N7.43; found C 60.80, H 5.75, N 7.59.

Methyl 5-(3-chlorophenyl)-7-methyl-3-octyl-5H-thiazolo[3,2-a]pyrimidine-6 -carboxylate (2s)

Obtained as a yellow oil in 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (s, 1H), 7.22 – 7.17 (m, 2H), 7.14 (dd, *J* = 4.1, 1.9 Hz, 1H), 6.17 (s, 1H), 5.96 (s, 1H), 3.70 (s, 3H), 2.35 (s, 3H), 2.27 – 2.15 (m, 1H), 1.61 – 1.49 (m, 1H), 1.47 – 1.34 (m, 1H), 1.30 – 1.16

(m, 10H), 0.86 (t, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.05, 156.73, 144.74, 139.58, 134.58, 130.07, 128.37, 126.26, 124.28, 99.92, 99.18, 56.99, 51.00, 31.74, 29.28 – 28.76, 27.30, 26.79, 23.93, 22.60, 14.09; HRMS m/z (ESI) calcd for C₂₃H₃₀ClN₂O₂S (M + H)⁺ 433.17110, found 433.17015. Anal. calcd for C₂₃H₂₉ClN₂O₂S: C 63.80, H 6.75, N 6.47; found C 63.86, H 6.75, N 6.31.

3. References

(1). Sun, Q.; Wang, Y. Q.; Ge, Z. M.; Cheng, T. M.; Li, R. T. Synthesis 2004, 7, 1047.

(2). Arduengo III, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. **1991**, 113, 361.

(3) Xu, H.; Zhang, Y.; Huang, J.; Chen, W. Org. Lett. 2010, 12(16), 3704.

(4) Balkan, A.; Uma, S.; Ertan, M.; Wiegrebe, W. Pharmazie, 1992, 47(9), 687.

4. X-ray of compound 2a

The analysis of single crystal X-ray diffraction of compound **2a**, C₂₁H₁₈N₂O₂S, $M_r = 362.45$, monoclinic, space group $P2_1/c$, a=7.917(5), b=19.319(8), c=11.750(5)Å, β =91.25(1)°, V = 1796.7(16)Å³, Z = 4, $D_c = 1.340$ g/cm³. Intensity data were collected with *Rigaku MicroMax 002*+ CCD diffractometer with a graphite monochromator (ω and κ scans, $2\theta_{max} = 144.96^\circ$), CuK (λ = 1.54187Å) radiation. A total of 3521 unique reflections were collected, of which 2995 were observed ($|F|^2 \ge 2\sigma |F|^2$). The structure was solved by direct method and expanded by difference *Fourier* techniques with SHELX-97, refined on F^2 by successive full matrix least-squares techniques for non-H-atoms. H-Atoms were fixed at calculated positions. The final indices were $R_1 = 0.0482$, $wR_2 = 0.1322$, S = 1.104.

5. ¹H NMR and ¹³C NMR spectra of those compounds

fl (ppm)

250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

