Supplemental Information

Solution Synthesis of Homogeneous Plate-like Multifunctional CeO₂ Particles

Shu YIN*, Yoshihiro MINAMIDATE, Shunsuke TONOUCHI, Takehiro GOTO, Qiang DONG, Hisanori YAMANE and Tsugio SATO

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan *E-mail: shuyin@tagen.tohoku.ac.jp

$Ce_2(CO_3)_3$ $^{\circ}8H_2O$
604.40
293(2) K
Rigaku RAXIS-RAPID
arOmega
Orthorhombic
<i>Pmn</i> 2 ₁ (No. 31)
9.5324(7)
8.4915(7)
8.9523(8)
724.64(10)
2.770
2
0.71075 Å (Mo Kα)
6.292 mm ⁻¹
platelet, transparent
0.100 x 0.007 x 0.112 mm
numerical (NUMABS; Higashi, 1999)
0.962 and 0.599
3321
811 (R_{int} =0.079), (684 $I > 2\sigma(I)$)
3.12 to 20.82°
<i>h</i> = -9 -> 9, <i>k</i> = -8 -> 8, <i>l</i> = -8 -> 8
Full-matrix least squares on F^2
$R[F^2 > 2\sigma(F^2)] = 0.0410, wR(F^2) = 0.0973$
1.088
811/1/67
$w = 1/[\sigma^2(F_o^2) + (0.0222P)^2 + 4.8138P]$, where $P = (F_o^2 + 2F_c^2)/3$
2.23 and -1.03 eÅ ⁻³

Table SI-1 Structure refinement and crystallographic data for Ce₂(CO₃)₃ 8H₂O.

Table SI-2 Anisotropic displacement parameters (Å² x 10³) for Ce₂(CO₃)₃ · 8H₂O. The anisotropic displacement factor exponent takes the form: -2 π^2 [$h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

	U_{11}	U_{22}	U ₃₃	U_{23}	<u>U</u> ₁₃	U_{12}
Cel	0.0181(7)	0.0333(9)	0.0121(7)	-0.003(3)	0.000	0.000
Ce2	0.0172(7)	0.0317(9)	0.0139(7)	0.002(3)	0.000	0.000

Table SI-3 Selected interatomic distances (Å) of Ce₂(CO₃)₃ · 8H₂O.

Cel O4	2.494(12) x 2
Cel O3	2.511(12) x 2
Cel O3	2.511(12)
Cel O2(H_2O)	2.57(3) x 2
Cel O1(H ₂ O)	2.636(13) x 2
Cel O3(H ₂ O)	2.73(4) x 2
Cel O5	2.746(12) x 2
Ce2 O2	2.496(12) x 2
Ce2 O5	2.521(13) x 2
Ce2 O3	2.535(12) x 2
Ce2 O5(H ₂ O)	2.55(3) x 2
$Ce2 O4(H_2O)$	2.64(3) x 2
Ce2 O4	2.794(12) x 2
C1 O1	1.24(2)
C1 O2	1.34(4) x 2
C2 O5	1.275(19)
C2 O4	1.277(19)
C2 O3	1.28(2)

Atom	site	occ.	x	у	Ζ	$U_{ m eq}({ m \AA}^2)^{ m a}$
Cel	2a	1.0	0	0.50146(13)	0.5135(4)	0.0211(4)
Ce2	2a	1.0	0	0.56276(14)	0.0135(4)	0.0209(4)
C1	2a	1.0	0	0.212(3)	0.011(8)	0.039(6)
C2	4b	1.0	0.2471(18)	0.437(2)	0.308(2)	0.017(5)
01	2a	1.0	0	0.067(2)	-0.006(4)	0.058(7)
O2	4b	1.0	0.0929(12)	0.2991(14)	0.0869(13)	0.028(3)
03	4b	1.0	0.2425(12)	0.4087(16)	0.4482(13)	0.033(4)
O4	4b	1.0	0.3630(12)	0.4184(15)	0.2383(13)	0.025(4)
05	4b	1.0	0.1341(13)	0.4789(16)	0.2428(14)	0.025(3)
$O6(H_2O)$	4b	1.0	0.3657(12)	0.2360(16)	0.0787(13)	0.040(4)
$O7(H_2O)$	4b	0.5	0.076(3)	0.245(4)	0.643(3)	0.005(8)
$O8(H_2O)$	4b	0.5	0.071(4)	0.233(5)	0.364(4)	0.051(14)
O9(H ₂ O)	4b	0.5	0.409(3)	0.187(3)	0.369(4)	0.024(9)
O10(H ₂ O)	4b	0.5	0.389(3)	0.189(4)	0.622(4)	0.039(11)
O11(H ₂ O)	4b	0.5	0.128(4)	-0.003(4)	0.357(4)	0.045(12)
O12(H ₂ O)	4 <i>b</i>	0.5	0.159(4)	0.023(5)	0.640(5)	0.059(13)

Table SI-4 The atomic coordinates, occupancies and isotropic atomic displacement parameters of $Ce_2(CO_3)_3$ * $8H_2O$.

 $\overline{{}^{a} U_{eq}}$ is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Fig.SI-1 XRD patterns of the cerium precursors prepared at (a)pH 4.81, (b)pH5.66, (c)pH5.74, (d)pH5.99, (e)pH6.04, (f)pH6.74, (g)pH6.87, (h)pH8.69, and (i) pH9.83

Fig.S1-2 SEM images of the particles synthesized in 0.1M Ce(NO₃)₃ solution (a) 25°C, (b) 50°C, (c) 75°C, (d)100°C and (e)200°C, using 0.3M NaHCO₃ solution as precipitator.

Fig.SI-3 SEM images of the particles synthesized in 0.1M Ce(NO₃)₃ solution (a) 25°C, (b) 50°C, (c) 75°C, (d)100°C, (e) 150°C and (e)200°C, using 0.27M NaHCO₃/ 0.03M Na₂CO₃ mixed solution as precipitator.

Fig.SI-4 The relationship between average particle size and (a) UVA/Vis shielding factor; (b) UVB/Vis shielding factor. Different marks indicated the samples synthesized in different solvents.•, \circ : aqueous solution; \blacktriangle , \triangle : ethylene glycol solution; \blacksquare , \square : ethanol solution.

 $UVA/Vis = \frac{100\%\text{-average transmittance at (320-400nm)}}{100\%\text{-average transmittance at (400-800nm)}}$ $UVB/Vis = \frac{100\%\text{-average transmittance at (280-320nm)}}{100\%\text{-average transmittance at (400-800nm)}}$

Fig.SI-5 Photocatalytic catalytic activity of plate-like cerium oxides , together with those of blank test and commercial titania particles P-25.

Fig. SI-6 XRD patterns of plate-like rare earth carbonates $\text{Re}_2(\text{CO}_3)_3 \cdot \text{nH}_2\text{O}$ (left) and rare earth oxides Re_2O_3 (Re = Sm (a), Tb (b), La (c), Y (d), and Eu (e)) particles synthesized by the similar manner in 0.3M NaHCO₃ solution at 25°C, followed by calcination in air.

Fig.SI-7 SEM images of (a) Sm_2O_3 , (b) Tb_2O_3 , (c) La_2O_3 , (d) Y_2O_3 , and (e) Eu_2O_3 plate-like particles synthesized by the similar manner in 0.3M NaHCO₃ solution at 25°C, followed by calcination in air.