Supporting Information

Anchored palladium nanoparticles onto single walled carbon nanotubes: Efficient recyclable catalyst to N-containing heterocycles

Subhankar Santra^a, Priyadarshi Ranjan^a, Parthasarathi Bera^b, Prasenjit Ghosh^c and Swadhin K. Mandal^{a, *}

^a Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur - 741252, India

^b Surface Engineering Division, National Aerospace Laboratories, Bangalore - 560017, India

^c Department of Chemistry and Physics, Indian Institute of Science Education and Research-Pune, Pune - 411021, India

*Email: <u>swadhin.mandal@iiserkol.ac.in</u>

Contents

Synthesis of physically mixed catalyst and catalytic result	02 - 03
DFT calculation	03 – 04
Characterization data	04 – 13
References	14
¹ H and ¹³ C NMR spectra of the coupled products	15 – 44
EDX spectrum of the catalyst	45
Additional AFM images	45 – 48

Synthetic procedure for preparation of physically mixed catalyst

Palladium acetate (100 mg) was subjected to thermal treatment at 95 °C in DMF for 4 h fashion as reported in the manuscript but in the absence of SWNT. A black powder (28 mg) was isolated after stepwise treatment of the resulting reaction mixture such as, centrifugation (30 minutes at 8000 rpm, 8 °C), filtration (*via* Millipore membrane filter paper) followed by the sufficient washing with ethanol, acetone and finally with diethyl ether. It was then blended properly with SWNT (100 mg) in a mortar-pestle and then utilized for the subsequent catalytic reactions. The stoichiometry for physical mixing was kept unaltered to that used for preparation of anchored SWNT-PdNPs catalyst.

Catalytic results with physically mixed catalyst

Table S1 lists the catalytic results using the physically mixed catalyst and the results are compared the result with that obtained using anchored SWNT-PdNPs catalysts under identical reaction condition.

Table S1. Acyl Sonogashira reaction catalyzed by physically mixed catalyst ^a

^a Reaction condition: Physically mixed catalyst (10 mg) was used together with acid chlorides **1** (1 mmol), terminal acetylenes **2** (1 mmol) and dry triethylamine (1 mmol) in 5 mL dry acetonitrile. ^bIsolated yields of the products after purification through column chromatography and yields in the parenthesis represent that obtained utilizing the anchored SWNT-PdNPs (10 mg) catalysts under identical reaction condition.

DFT calculation

The DFT calculations have been performed using the Quantum-ESPRESSO software which is a plane wave based implementation of DFT. The Kohn-Sham equations are solved using ultrasoft pseudopotentials¹ and a plane-wave basis with a cut-off of 35 Ry for the wavefunction and 360 Ry for the augmentation charge density. The electron-electron exchange and correlation has been described using the Perdew-Burke-Ernzerhof (PBE) parametrization of the generalized gradient approximation (GGA).² In order to improve convergence, a Marzari-Vanderbilt smearing³ with a width of 0.001 Ry was used. In order to study the anchoring of the PdNPs on SWNT-COOH, we have used infinitely long zigzag nanotubes with chirality (4,0) semi-conducting and (3,0) metallic SWNTs. Pd trimer (Pd₃) has been used to model the PdNPs. The semi-conducting SWNT-COOH-Pd₃ (box dimensions $Å^3$) 14.55×21.82×12.62 and metallic SWNT-COOH-Pd₃ (box dimensions $13.78 \times 16.54 \times 12.63$ Å³) systems have been placed in large hexagonal boxes so as to ensure negligible interactions between the periodic images. Brillouin-zone integrations have been performed using (1x1x6) Monkhorst-Pack k-point mesh.

The calculations were performed using the Quantum-ESPRESSO software which is a plane wave based implementation of DFT.⁴ Indeed, the calculation conveyed that the palladium metal trimer (Pd₃) binds with the -C=O oxygen of the carboxylic acid groups (Figure S1). The calculation employed infinitely long zigzag nanotubes with chirality (3,0) for metallic SWNTs (Figure S1A) and (4,0) for semi-conducting SWNTs (Figure S1B) and Pd trimer (Pd₃) has been considered as a replica model of PdNPs. The binding energies of the Pd₃ bound to SWNT–COOH are given by:

$$\mathsf{D}E = E_{\mathsf{NT}-\mathsf{Pd}_3} - E_{\mathsf{NT}} - E_{\mathsf{Pd}_3}$$

where ΔE is the binding energy of Pd₃ to SWNT-COOH, and E_{NT-Pd3} , E_{NT} and E_{Pd3} are the total energies of SWNT-COOH with Pd₃ attached to it, SWNT-COOH alone and Pd₃ in gas phase respectively. The binding energies of Pd₃ cluster on metallic SWNT and semiconducting SWNT were calculated as -0.66 eV and -0.95 eV respectively indicating a strong interaction of Pd₃ cluster through the carboxyl groups.

Figure S1. Optimized structure of (A) metallic SWNT-COOH-Pd₃ and (B) semi-conducting SWNT-COOH-Pd₃ revealing that the C=O oxygen of carboxylic acid group binds with the Pd₃ cluster. The bond lengths indicated in the figure are in Å.

Characterization data

1. 3-phenyl-1-(thiophen-2-yl)prop-2-yn-1-one⁵

Eluent: Hexane:ethyl acetate (100:1)

¹**H NMR** (CDCl₃, 400 MHz): δ 7.89-7.89 (dd, J = 3.7 Hz, 1H), 7.59-7.61 (dd, J = 4.6 Hz, 1H), 7.51-7.53 (m, 2H), 7.32-7.34 (m, 1H), 7.26-7.29 (m, 2H), 7.06-7.08 (m, 1H) ppm.

¹³**C NMR** (CDCl₃, 125 MHz): δ 169.3, 144.5, 135.1, 134.9, 132.7, 130.6, 128.4, 128.1, 119.5, 91.4, 86.2 ppm.

2. 1-(furan-2-yl)-3-phenylprop-2-yn-1-one⁶

Eluent: Hexane:ethyl acetate (100:2)

¹**H NMR** (CDCl₃, 400 MHz): *δ* 7.67 (s, 1H), 7.61-7.63 (m, 2H), 7.37-7.46 (m, 4H), 7.58-7.59 (q, 1H) ppm.

¹³**C NMR** (CDCl₃, 100 MHz): δ 164.6, 153.1, 147.9, 132.9, 130.8, 128.6, 120.9, 119.7, 112.6, 91.8, 86.1 ppm.

3. 1-(naphthalen-1-yl)-3-phenylprop-2-yn-1-one⁵

Eluent: Hexane:ethyl acetate (100:1.5)

¹**H** NMR (CDCl₃, 400 MHz): δ 9.30-9.32 (d, *J* = 8.7 Hz, 1H), 8.62-8.66 (dd, *J* = 6.9 Hz, 1H), 8.03-8.05 (d, *J* = 8.2 Hz, 1H), 7.83-7.86 (d, *J* = 14 Hz, 1H), 7.66-7.70 (m, 3H), 7.55-7.59 (m, 2H), 7.38-7.46 (m, 3H) ppm.

¹³**C NMR** (CDCl₃, 100 MHz): δ 179.5, 134.9, 134.4, 133.6, 132.7, 132.6, 130.5, 130.4, 128.7, 128.4, 128.4, 126.5, 125.7, 124.3, 120.0, 91.5, 88.3 ppm.

4. 1-(naphthalen-2-yl)-3-phenylprop-2-yn-1-one⁵

Eluent: Hexane:ethyl acetate (100:1.5)

¹**H NMR** (CDCl₃, 500 MHz): δ 8.73 (s, 1H), 8.17-8.19 (dd, J = 6.8 Hz, 1H), 7.96-7.98 (d, J = 6.4 Hz, 1H), 7.83-7.87 (m, 2H), 7.69-7.72 (m, 2H), 7.51-7.59 (m, 2H), 7.39-7.48 (m, 3H) ppm.

¹³**C NMR** (CDCl₃, 100 MHz): δ 177.6, 135.9, 134.1, 132.8, 132.4, 132.1, 130.6, 129.6, 128.8, 128.5, 128.3, 127.7, 126.7, 123.6, 119.9, 92.8, 86.9 ppm.

5. (*E*)-1,5-diphenylpent-1-en-4-yn-3-one⁵

Eluent: Hexane:ethyl acetate (100:1.5)

¹**H** NMR (CDCl₃, 400 MHz): δ 7.86-7.90 (d, J = 16 Hz, 1H), 7.53-7.63 (m, 4H), 7.36-7.44 (m, 6H), 6.81-6.85 (d, J = 16 Hz, 1H) ppm.

¹³**C NMR** (CDCl₃, 100 MHz): δ 177.8, 148.0, 133.7, 132.7, 130.9, 130.4, 128.8, 128.4, 128.4, 128.4, 128.1, 119.8, 91.3, 86.4 ppm.

6. 1-(1-Adamantyl)-3-phenylprop-2-yn-1-one⁷

Eluent: Hexane:ethyl acetate (100:1)

¹**H NMR** (CDCl₃, 400 MHz): δ 7.58-7.61 (d, J = 6.8 Hz, 2H), 7.43-7.48 (t, J = 7.8 Hz, 1H), 7.36-7.40 (t, J = 7.3 Hz, 2H), 2.09 (s, 3H), 1.94 (m, 6H), 1.71-1.79 (m, 6H) ppm.

¹³**C NMR** (CDCl₃, 100 MHz): *δ* 193.9, 132.9, 130.4, 128.5, 120.2, 92.2, 85.9, 46.9, 38.0, 36.4, 27.8 ppm.

7. 4,4-dimethyl-1-(thiophen-2-yl)pent-2-yn-1-one

Eluent: Hexane:ethyl acetate (100:1.5)

¹**H NMR** (CDCl₃, 400 MHz): *δ* 7.64-7.67 (m, 1H), 7.11-7.13 (m, 1H), 6.76 (s, 1H), 1.29 (s, 9H) ppm.

¹³**C NMR** (CDCl₃, 100 MHz): *δ* 182.7, 155.9, 144.9, 134.1, 132.4, 128.1, 118.4, 40.0, 28.6 ppm.

HRMS (**ESI**): Calculated for C₁₁H₁₂OS [M+H]⁺: 193.0687; Found: 192.9775.

8. 1-(furan-2-yl)-4,4-dimethylpent-2-yn-1-one

Eluent: Hexane:ethyl acetate (100:2)

¹**H** NMR (CDCl₃, 400 MHz): δ 7.59 (s, 1H), 7.24-7.25 (d, J = 3.7 Hz, 1H), 6.50-6.51 (m, 1H), 1.29 (s, 9H) ppm.

¹³**C NMR** (CDCl₃, 100 MHz): *δ* 177.6, 158.3, 153.5, 146.3, 117.6, 116.8, 112.5, 40.4, 28.7 ppm.

HRMS (ESI): Calculated for C₁₁H₁₂O₂ [M+H]⁺: 177.0915; Found: 177.0198.

9. 1-(furan-2-yl)hept-2-yn-1-one⁸

Eluent: Hexane:ethyl acetate (100:2)

¹**H** NMR (CDCl₃, 400 MHz): δ 7.62 (s, 1H), 7.28-7.29 (d, J = 3.7 Hz, 1H), 6.53-6.54 (m, 1H), 2.42-2.46 (t, J = 6.7 Hz, 2H), 1.57-1.63 (m, 2H), 1.44-1.49 (m, 2H), 0.91-0.95 (t, J = 7.4 Hz, 3H) ppm.

¹³C NMR (CDCl₃, 100 MHz): δ 164.9, 153.2, 147.7, 120.6, 112.4, 95.5, 78.9, 29.6, 21.9, 18.7, 13.4 ppm.

10. 1-(furan-2-yl)non-2-yn-1-one⁹

Eluent: Hexane:ethyl acetate (100:2)

¹**H** NMR (CDCl₃, 400 MHz): δ 7.62 (s, 1H), 7.28-7.29 (d, J = 3.6 Hz, 1H), 6.53-6.54 (m, 1H), 2.41-2.45 (t, J = 7.3 Hz, 2H), 1.58-1.66 (m, 2H), 1.39-1.47 (m, 2H), 1.27-1.33 (m, 4H), 0.86-0.89 (t, J = 7.3 Hz, 3H) ppm.

¹³C NMR (CDCl₃, 100 MHz): δ 164.9, 153.2, 147.7, 120.5, 112.4, 95.6, 78.9, 31.1, 28.5, 27.6, 22.4, 19.0, 13.9 ppm.

11. 3-(Biphenyl-4-yl)-1-(1-adamantyl)prop-2-yn-1-one

Eluent: Hexane:ethyl acetate (100:1)

¹**H NMR** (CDCl₃, 400 MHz): δ 7.66-7.68 (m, 2H), 7.59-7.63 (m, 4H), 7.44-7.49 (t, *J* = 7.3 Hz, 2H), 7.37-7.41 (t, *J* = 7.3 Hz, 1H), 2.12 (s, 3H), 1.97-1.98 (m, 6H), 1.73-1.82 (m, 6H) ppm.

¹³**C NMR** (CDCl₃, 100 MHz): δ 193.9, 143.3, 139.8, 133.4, 128.9, 128.1, 127.2, 127.1, 119.0, 92.2, 86.7, 46.9, 38.1, 36.5, 27.9 ppm.

HRMS (**ESI**): Calculated for C₂₅H₂₄O [M+H]⁺: 341.1905; Found: 341.1027.

12. 3-(4-Fluorophenyl)-1-(1-adamantyl)prop-2-yn-1-one

Eluent: Hexane:ethyl acetate (100:1)

¹**H NMR** (CDCl₃, 400 MHz): *δ* 7.55-7.58 (m, 2H), 7.04-7.08 (m, 2H), 2.07 (s, 3H), 1.91-1.92 (m, 6H), 1.69-1.78 (m, 6H) ppm.

¹³C NMR (CDCl₃, 100 MHz): δ 193.7, 165.0, 162.5, 135.2, 135.1, 116.4, 116.3, 116.1, 115.9, 90.9, 85.9, 46.8, 38.0, 36.4, 27.8 ppm.

HRMS (**ESI**): Calculated for C₁₉H₁₉FO [M+H]⁺: 283.3598; Found: 283.1346.

13. 1-adamantyl-4,4-dimethylpent-2-yn-1-one

Eluent: Hexane:ethyl acetate (100:1)

¹**H NMR** (CDCl₃, 400 MHz): δ 2.03 (s, 3H), 1.81-1.82 (m, 6H), 1.64-1.74 (m, 6H), 1.28 (s, 9H) ppm.

¹³**C NMR** (CDCl₃, 100 MHz): *δ* 194.3, 102.9, 77.06, 46.7, 38.1, 36.4, 30.1, 27.8, 27.7 ppm.

HRMS (ESI): Calculated for $C_{17}H_{24}O [M+H]^+$: 245.1905; Found: 245.1125.

14. 1-(1-Adamantyl)non-2-yn-1-one⁷

Eluent: Hexane:ethyl acetate (100:1)

¹**H** NMR (CDCl₃, 400 MHz): δ 2.33-2.37 (t, J = 6.7 Hz, 2H), 2.02 (s, 3H), 1.81 (s, 6H), 1.63-1.73 (m, 6H), 1.52-1.58 (m, 2H), 1.39-1.42 (m, 2H), 1.26-1.29 (m, 4H), 0.84-0.88 (t, J = 6.7 Hz, 3H) ppm.

¹³**C NMR** (CDCl₃, 100 MHz): δ 194.2, 95.7, 78.7, 46.6, 37.9, 36.4, 31.1, 28.5, 27.8, 27.7, 22.4, 18.9, 13.9 ppm.

15. 3-cyclohexyl-1-(thiophen-2-yl)prop-2-yn-1-one

Eluent: Hexane:ethyl acetate (100:0.5)

¹**H NMR** (CDCl₃, 400 MHz): *δ* 7.87-7.88 (dd, 1H), 7.65-7.67 (dd, 1H), 7.12-7.14 (m, 1H), 2.64-2.69 (m, 1H), 1.87-1.90 (m, 2H), 1.73-1.77 (m, 2H), 1.53-1.62 (m, 3H), 1.35-1.42 (m, 3H) ppm.

¹³**C NMR** (CDCl₃, 100 MHz): *δ* 170.1, 145.1, 134.7, 128.1, 98.9, 79.2, 31.5, 29.125.6, 24.6 ppm.

HRMS (ESI): Calculated for $C_{13}H_{14}OS[M+H]^+$: 219.0843; Found: 219.0467.

16. 1-(2-methoxyphenyl)-3-phenylprop-2-yn-1-one⁵

Eluent: Hexane:ethyl acetate (100:1.5)

¹**H NMR** (CDCl₃, 500 MHz): δ 8.05-8.07 (dd, *J* = 7.5 Hz, 1H), 7.58-7.60 (m, 2H), 7.48-7.52 (m, 1H), 7.33-7.42 (m, 3H), 6.97-7.03 (m, 2H), 3.91 (s, 3H) ppm.

¹³**C NMR** (CDCl₃, 125 MHz): δ 176.2, 159.4, 134.8, 132.5, 132.1, 130.2, 128.3, 126.2, 120.2, 119.9, 111.9, 91.2, 88.9, 55.5 ppm.

17. 1-(thiophen-2-yl)-3-(trimethylsilyl)prop-2-yn-1-one⁵

Eluent: Hexane:ethyl acetate (100:0.5)

¹**H NMR** (CDCl₃, 400 MHz): δ 7.89-7.90 (dd, J = 4.1 Hz, 1H), 7.68-7.69 (dd, J = 5 Hz, 1H), 7.12-7.14 (m, 1H), 0.27 (s, 9H) ppm.

¹³C NMR (CDCl₃, 100 MHz): δ 169.3, 144.4, 135.5, 135.4, 128.2, 100.2, 99.0, -0.85 ppm.

18. 1-(furan-2-yl)-3-(trimethylsilyl)prop-2-yn-1-one¹⁰

Eluent: Hexane:ethyl acetate (100:2)

¹**H** NMR (CDCl₃, 400 MHz): δ 7.65 (s, 1H), 7.34-7.35 (d, J = 3.7 Hz, 1H), 6.56-6.57 (m, 1H), 0.27 (s, 9H) ppm.

¹³C NMR (CDCl₃, 100 MHz): δ 164.2, 152.9, 148.2, 121.6, 112.6, 100.1, 99.2, -0.8 ppm.

19. 1-(naphthalen-1-yl)-3-(trimethylsilyl)prop-2-yn-1-one

Eluent: Hexane:ethyl acetate (100:0.5)

¹**H** NMR (CDCl₃, 400 MHz): δ 9.19-9.22 (d, *J* = 8.6 Hz, 1H), 8.58-8.59 (m, 1H), 8.05-8.08 (d, *J* = 8.6 Hz, 1H), 7.87-7.89 (d, *J* = 8.6 Hz, 1H), 7.64-7.66 (m, 1H), 7.55-7.59 (m, 2H), 0.35 (s, 9H) ppm.

¹³**C NMR** (CDCl₃, 100 MHz): δ 179.2, 135.1, 134.9, 133.7, 132.3, 130.6, 128.9, 128.5, 126.7, 125.9, 124.4, 102.3, 98.7, -0.7 ppm.

HRMS (ESI): Calculated for $C_{16}H_{16}OSi [M+H]^+$: 253.1048; Found: 253.0907.

20. 1-(naphthalen-2-yl)-3-(trimethylsilyl)prop-2-yn-1-one

Eluent: Hexane:ethyl acetate (100:0.5)

¹**H NMR** (CDCl₃, 400 MHz): δ 8.71 (s, 1H), 8.12-8.15 (m, 1H), 7.99-8.01 (d, *J* = 7.9 Hz, 1H), 7.87-7.89 (m, 2H), 7.55-7.64 (m, 2H), 0.37 (s, 9H) ppm.

¹³C NMR (CDCl₃, 100 MHz): δ 177.6, 136.1, 133.9, 132.3, 129.9, 129.0, 128.4, 127.9, 126.9, 123.8, 100.9, 100.5, -0.6 ppm.

HRMS (**ESI**): Calculated for C₁₆H₁₆OSi [M+H]⁺: 253.1048; Found: 253.0819.

21. (E)-1-phenyl-5-(trimethylsilyl)pent-1-en-4-yn-3-one¹¹

Eluent: Hexane:ethyl acetate (100:1.5)

¹**H NMR** (CDCl₃, 400 MHz): δ 7.82-7.86 (d, J = 16.5 Hz, 1H), 7.56-7.58 (m, 2H), 7.42-7.43 (m, 3H), 6.76-6.80 (d, J = 15.9 Hz, 1H), 0.31 (s, 9H) ppm.

¹³**C NMR** (CDCl₃, 100 MHz): *δ* 177.9, 148.8, 133.9, 131.2, 129.0, 128.7, 128.2, 100.6, 98.7, -0.7 ppm.

22. 1-phenyl-3-(trimethylsilyl)prop-2-yn-1-one¹²

Eluent: Hexane:ethyl acetate (100:0.5)

¹**H** NMR (CDCl₃, 400 MHz): δ 8.12-8.14 (d, J = 8 Hz, 2H), 7.57-7.61 (t, J = 7.9 Hz, 1H), 7.45-7.49 (t, J = 8 Hz, 2H), 0.31 (s, 9H) ppm.

¹³C NMR (CDCl₃, 100 MHz): δ 177.6, 136.4, 134.1, 129.5, 128.5, 100.7, 100.4, -0.8 ppm.

23. 4-(thiophen-2-yl)pyrimidin-2-amine⁵

Eluent: Hexane:ethyl acetate (1:1)

¹**H** NMR (DMSO-d₆, 400 MHz): δ 8.22-8.23 (d, J = 4.9 Hz, 1H), 7.84-7.85 (d, J = 3.6 Hz, 1H), 7.69-7.70 (d, J = 4.9 Hz, 1H), 7.15-7.18 (t, J = 4.3 Hz, 1H), 7.03-7.05 (d, J = 4.9 Hz, 1H), 6.64 (s, 2H) ppm.

¹³**C NMR** (DMSO-d₆, 100 MHz): δ 163.6, 159.1, 158.9, 142.9, 130.1, 128.6, 127.8, 104.5 ppm.

24. 4-(furan-2-yl)pyrimidin-2-amine⁵

Eluent: Hexane:ethyl acetate (1:1)

¹**H NMR** (DMSO-d₆, 400 MHz): δ 8.26-8.27 (d, J = 4.9 Hz, 1H), 7.85 (s, 1H), 7.16-7.17 (d, J = 3.6 Hz, 1H), 6.87-6.88 (d, J = 4.9 Hz, 1H), 6.64-6.66 (m, 3H) ppm.

¹³**C NMR** (DMSO-d₆, 100 MHz): δ 163.6, 159.2, 155.5, 151.8, 145.5, 112.6, 111.7, 104.1 ppm.

25. 4-(naphthalen-1-yl)pyrimidin-2-amine⁵

Eluent: Hexane:ethyl acetate (1:1)

¹**H** NMR (DMSO-d₆, 400 MHz): δ 8.36-8.37 (d, J = 5.5 Hz, 1H), 8.16-8.18 (m, 1H), 7.98-8.02 (m, 2H), 7.52-7.60 (m, 4H), 6.80-6.81 (d, J = 4.9 Hz, 1H), 6.75 (s, 2H) ppm.

¹³**C NMR** (DMSO-d₆, 100 MHz): δ 166.6, 163.6, 158.7, 136.6, 133.4, 130.1, 129.4, 128.4, 127.1, 126.7, 126.2, 125.4, 125.3, 110.8 ppm.

26. 4-(naphthalen-2-yl)pyrimidin-2-amine⁵

Eluent: Hexane:ethyl acetate (1:1)

¹**H** NMR (DMSO-d₆, 400 MHz): δ 8.67 (s, 1H), 8.35-8.37 (d, J = 4.9 Hz, 1H), 8.19-8.21 (q, 1H), 8.01-8.05 (t, J = 7.3 Hz, 2H), 7.96-7.98 (m, 1H), 7.57-7.59 (m, 2H), 7.28-7.29 (d, J = 5.5 Hz, 1H), 6.72 (s, 2H) ppm.

¹³**C NMR** (DMSO-d₆, 100 MHz): δ 163.8, 163.4, 159.1, 134.4, 133.9, 132.7, 128.8, 128.2, 127.6, 127.2, 126.6, 126.5, 123.9, 106.1 ppm.

27. (E)-4-styrylpyrimidin-2-amine

Eluent: Hexane:ethyl acetate (1:1)

¹**H NMR** (DMSO-d₆, 400 MHz): δ 8.21-8.23 (d, *J* = 4.9 Hz, 1H), 7.69-7.73 (d, *J* = 16.5 Hz, 1H), 7.62-7.64 (d, *J* = 7.3 Hz, 2H), 7.32-7.42 (m, 3H), 7.02-7.06 (d, *J* = 16.5 Hz, 1H), 6.72-6.73 (d, *J* = 4.9 Hz, 1H), 6.52 (s, 2H) ppm.

¹³**C NMR** (DMSO-d₆, 100 MHz): δ 163.6, 162.5, 158.9, 135.8, 135.1, 129.2, 129.1, 127.6, 126.9, 108.5 ppm.

HRMS (ESI): Calculated for C₁₂H₁₁N₃ [M+H]⁺: 198.1031; Found: 197.9872.

28. 4-phenylpyrimidin-2-amine¹³

Eluent: Hexane:ethyl acetate (100:35)

¹**H** NMR (DMSO-d₆, 400 MHz): δ 8.30-8.32 (d, J = 5.5 Hz, 1H), 8.05-8.07 (m, 2H), 7.47-7.48 (t, J = 3.1 Hz, 3H), 7.09-7.11 (d, J = 4.9 Hz, 1H), 6.72 (s, 2H) ppm.

¹³**C NMR** (DMSO-d₆, 100 MHz): δ 163.8, 163.6, 159.1, 137.0, 130.5, 128.7, 126.7, 105.8 ppm.

29. 1-Adamantylpyrimidin-2-amine¹⁴

Eluent: Hexane:ethyl acetate (100:35)

¹**H NMR** (DMSO-d₆, 400 MHz): δ 8.11-8.12 (d, J = 4.9 Hz, 1H), 6.49-6.51 (d, J = 4.9 Hz, 1H), 6.32 (s, 2H), 2.01 (s, 3H), 1.82-1.83 (s, 6H), 1.65-1.73 (m, 6H) ppm.

¹³C NMR (DMSO-d₆, 100 MHz): δ 177.4, 163.4, 158.3, 105.3, 40.6, 38.4, 36.4, 28.0 ppm.

30. 4-tert-butylpyrimidin-2-amine

Eluent: Hexane:ethyl acetate (100:25)

¹**H NMR** (DMSO-d₆, 400 MHz): δ 8.12-8.13 (d, J = 5.5 Hz, 1H), 6.56-6.57 (d, J = 4.9 Hz, 1H), 6.41 (s, 2H), 1.16 (s, 9H) ppm.

¹³C NMR (DMSO-d₆, 100 MHz): *δ* 177.6, 163.2, 158.1, 105.3, 36.8, 29.1 ppm.

HRMS (ESI): Calculated for $C_8H_{13}N_3 [M+H]^+$: 152.1187; Found: 152.0898.

References:

- 1. D. Vanderbilt, Phys. Rev. B, 1990, 41, 7892-7895.
- 2. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868.
- 3. N. Marzari, D. Vanderbilt, A. D. Vita, and M. C. Payne, Phys. Rev. Lett. 1999, 82, 3296-3299.
- 4. P. Giannozzi, S. Baroni, N. Bonini, N. et al., J. Phys.: Condens. Matter, 2009, 21, 395502-395521.

5. Santra, S.; Dhara, K.; Ranjan, P.; Bera, P.; Dash, J.; Mandal, S. K. *Green Chem.* **2011**, *13*, 3238-3247.

- 6. Likhar, P. R.; Subhas, M. S.; Roy, M.; Roy, S.; Kantam, M. L. Helv. Chim. Acta 2008, 91, 259-264.
- 7. Fusano, A.; Fukuyama, T.; Nishitani, S.; Inouye, T.; Ryu, I. Org. Lett. 2010, 12, 2410-2413.
- 8. Friour, G.; Cahiez, G.; Normant, J. F. Synthesis 1985, 50-54.
- 9. Shen, H.-C.; Su, H.-L.; Hsueh, Y.-C.; Liu, R.-S. Organometallics 2004, 23, 4332-4334.
- 10. Walton, D. R. M.; Waugh, F. J. Oranometal. Chem. 1972, 37, 45-56.
- 11. Shun, A. L. K. S.; Chernick, E. T.; Eisler, S.; Tykwinski, R. R. J. Org. Chem. 2003, 68, 1339-1347.
- 12. Friscourt, F.; Boons, G.-J. Org. Lett. 2010, 12, 4936-4939.
- 13. Djung, J. F.; Mears, R. J.; Montalbetti, C. A. G. N.; Coulter, T. S.; Golebiowski, A.; Carr, A. N.; Barker, O.; Greis, K. D.; Zhou, S.; Dolan, E.; Davis, G. F. *Bioorg. Med. Chem.* **2011**, *19*, 2742-2750.
- 14. Makarova, N. V.; Zemtsova, M. N.; Moiseev, I. K. Chemistry of Heterocyclic Compounds 2001, 37, 840-843.

Figure S2. ¹H and ¹³C NMR spectra of 3-phenyl-1-(thiophen-2-yl)prop-2-yn-1-one.

Figure S3. ¹H and ¹³C NMR spectra of 1-(furan-2-yl)-3-phenylprop-2-yn-1-one.

Figure S4. ¹H and ¹³C NMR spectra of 1-(naphthalen-1-yl)-3-phenylprop-2-yn-1-one.

Figure S5. ¹H and ¹³C NMR spectra of 1-(naphthalen-2-yl)-3-phenylprop-2-yn-1-one.

Figure S6. ¹H and ¹³C NMR spectra of (E)-1,5-diphenylpent-1-en-4-yn-3-one.

Figure S7. ¹H and ¹³C NMR spectra of 1-(1-Adamantyl)-3-phenylprop-2-yn-1-one.

Figure S8. ¹H and ¹³C NMR spectra of 4,4-dimethyl-1-(thiophen-2-yl)pent-2-yn-1-one.

Figure S9. ¹H and ¹³C NMR spectra of 1-(furan-2-yl)-4,4-dimethylpent-2-yn-1-one.

Figure S10. ¹H and ¹³C NMR spectra of 1-(furan-2-yl)hept-2-yn-1-one.

Figure S11. ¹H and ¹³C NMR spectra of 1-(furan-2-yl)non-2-yn-1-one.

Figure S12. ¹H and ¹³C NMR spectra of 3-(Biphenyl-4-yl)-1-(1-adamantyl)prop-2-yn-1-one.

Figure S13. ¹H and ¹³C NMR spectra of 3-(4-Fluorophenyl)-1-(1-adamantyl)prop-2-yn-1-one.

Figure S14. ¹H and ¹³C NMR spectra of 1-adamantyl-4,4-dimethylpent-2-yn-1-one.

Figure S15. ¹H and ¹³C NMR spectra of 1-(1-Adamantyl)non-2-yn-1-one.

Figure S16. ¹H and ¹³C NMR spectra of 3-cyclohexyl-1-(thiophen-2-yl)prop-2-yn-1-one.

Figure S17. ¹H and ¹³C NMR spectra of 1-(2-methoxyphenyl)-3-phenylprop-2-yn-1-one.

Figure S18. ¹H and ¹³C NMR spectra of 1-(thiophen-2-yl)-3-(trimethylsilyl)prop-2-yn-1-one.

Figure S19. ¹H and ¹³C NMR spectra of 1-(furan-2-yl)-3-(trimethylsilyl)prop-2-yn-1-one.

Figure S20. ¹H and ¹³C NMR spectra of 1-(naphthalen-1-yl)-3-(trimethylsilyl)prop-2-yn-1-one.

Figure S21. ¹H and ¹³C NMR spectra of 1-(naphthalen-2-yl)-3-(trimethylsilyl)prop-2-yn-1-one.

Figure S22. ¹H and ¹³C NMR spectra of (E)-1-phenyl-5-(trimethylsilyl)pent-1-en-4-yn-3-one.

Figure S23. ¹H and ¹³C NMR spectra of 1-phenyl-3-(trimethylsilyl)prop-2-yn-1-one.

Figure S24. ¹H and ¹³C NMR spectra of 4-(thiophen-2-yl)pyrimidin-2-amine.

Figure S25. ¹H and ¹³C NMR spectra of 4-(furan-2-yl)pyrimidin-2-amine.

Figure S26. ¹H and ¹³C NMR spectra of 4-(naphthalen-1-yl)pyrimidin-2-amine.

Figure S27. ¹H and ¹³C NMR spectra of 4-(naphthalen-2-yl)pyrimidin-2-amine.

Figure S28. ¹H and ¹³C NMR spectra of (*E*)-4-styrylpyrimidin-2-amine.

Figure S29. ¹H and ¹³C NMR spectra of 4-phenylpyrimidin-2-amine.

Figure S30. ¹H and ¹³C NMR spectra of 1-Adamantylpyrimidin-2-amine.

Figure S31. ¹H and ¹³C NMR spectra of 4-*tert*-butylpyrimidin-2-amine.

Figure S32. EDX spectrum of SWNT-PdNPs collected from TEM confirming the presence of palladium.

Figure S33. Images on the left hand side represent the AFM images of SWNT-PdNPs while the right hand side images represent corresponding height profile diagrams along the horizontal/vertical lines.

Figure S34. Images on the left hand side represent the AFM images of SWNT-PdNPs after 1st catalytic cycle while the right hand side images represent corresponding height profile diagrams along the horizontal lines.

Figure S35. Images on the left hand side represent the AFM images of SWNT-PdNPs after 4th catalytic cycle while the right hand side images represent corresponding height profile diagrams along the horizontal lines.