Biomimetic Crystallization of Anisotropic Zinc Oxide Nanoparticles in the Homogeneous Phase: Shape Control by Surface Additives Applied under Thermodynamic or Kinetic Control

Carlos Lizandara-Pueyo, Maria Carmen Morant-Miñana, Martin Wessig, Michael Krumm, Stefan Mecking and Sebastian Polarz*

University of Konstanz, Department of Chemistry, 78457 Konstanz, Germany.

SUPPORTING INFORMATION

<u>SI-1</u>

Temporal evolution of the anisotropy grade

<u>SI-2:</u>

Influence of the chain length of organic acids CH₃-(CH₂)_n-COOH on ZnO anisotropy and particle size determined from PXRD data.

PXRD-data:

Particle-size:

<u>SI-3</u>

TEM micrograph of the ZnO nanoparticles obtained after crystallization in the presence of a PBD additive functionalized with the non interacting -CH₂CH₃ group.

<u>SI-4</u>

FT-IR spectroscopy of the material obtained with PBD-COOH-97

FT-IR spectrum of the pure PBD-COOH-97 polymer as a reference (black).

FT-IR spectrum of the PBD-COOH-97/ ZnO composite (grey).

<u>SI-5</u>

PXRD pattern of the ZnO material obtained in the presence of perchlorate ions.

The low intensity and significant width of the [002] signal confirms the plate-like morphology of the sample.

<u>SI-6</u>

In-situ UV/Vis spectroscopy of ZnO formation in presence of Co^{2+}

UV/Vis spectrum of ZnO nanocrystals grown in the presence of Co^{2+} ions.

X-band EPR spectra of ZnO nanocrystals grown in the presence of Co^{2+} :

<u>SI-7</u>

Mechanism of the photocatalytic decomposition of Rhodamine B

[1] 2 ZnO +
$$h_V$$
 → ZnO (e⁻) + ZnO (h⁺)
[2.a] ZnO (h⁺) + RhB → RhB⁺ + ZnO
[2.b] ZnO (h⁺) + H₂O → OH + H⁻
[2.c] ZnO (e⁻) + O₂ → ZnO + O₂⁻
[2.d] ZnO (e⁻) + O₂⁻ + H⁺ → HO₂⁻ + ZnO
[2.d] HO₂⁻ + H⁺ → H₂O₂
[2.e] ZnO (e⁻) + H₂O₂ → OH⁻ + OH⁻
[3] OH⁻ + RhB → Rh → CO₂ + H₂O

Qu, P.; Zhao, J.; Shen, T.; Hidaka, H. *Journal of Molecular Catalysis A: Chemical* **1998**, *129*, 257.