A cathodic electrogenerated chemiluminescence biosensor based on luminol and hemin-graphene nanosheets for cholesterol detection

Meihe Zhang, Ruo Yuan*, Yaqin Chai, Shihong Chen, Xia Zhong, Huaan Zhong, Cun Wang

Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China

Materials: Graphene oxide was purchased from Nanjing xianfeng nano Co. (Nanjing, China). Hemin, cholesterol oxidase (ChOx, EC 1.1.3.6, \geq 50 units/mg, from Brevibacterium sp.), cholesterol (C₂₇H₄₆O, M_r: 386.67, \geq 99% purity, from lanolin), and Triton X-100 (C₃₄H₆₂O₁₁, MW: 646.85) were obtained from Sigma Chemical Co. (St. Louis, MO, USA). Phosphate buffer solutions (PBS, containing 0.9% NaCl) with pH 7.4 were prepared with 0.05 M KH₂PO₄ and 0.05 M Na₂HPO₄. The stock solution was prepared by dissolving cholesterol in the mixture of 2-propanol and Triton X-100, and then diluted it only with Triton X-100 solution for preparing standard solutions. Other chemicals used were of analytical grade and were used as received. Double distilled water was used throughout this study.

Apparatus and measurements: Cyclic voltammetry (CV) was performed with a CHI 600D electrochemical work station (Shanghai Chenhua Instruments Co., China). The ECL emission was monitored with a model MPI-A electrochemiluminescence analyzer (Xi'an Remax Electronic Science & Technology Co. Ltd., China) with the

voltage of the photomultiplier tube (PMT) set at 600 V in the process of detection. All experiments were performed with a conventional three-electrode system. The modified glassy carbon electrode (GCE) as working electrode, a platinum wire as counter electrode and a saturated calomel electrode (SCE) or Ag/AgCl (sat. KCl) as reference electrode. The UV-Vis absorption spectra were recorded in the range of 200-800 nm, using a UV-Vis spectrometer (UV-Vis 8500). All the electrochemical experiments were carried out at room temperature.

Preparation of hemin-graphene nanosheets: According to Guo's work¹, hemin-graphene nanosheets (H-GNs) were synthesized with a simple wet-chemical strategy through the π - π interactions. First, 20.0 mL of the homogeneous graphene oxide dispersion (0.5 mg/mL) was mixed with 20.0 mL of 0.5 mg/mL hemin aqueous solution and 200.0 μ L of ammonia solution, followed by the addition of 30 μ L of hydrazine solution. After being vigorously stirred for a few minutes, the vial was put in a water bath (60 °C) for 3.5 h. Finally, the product was obtained by filtration and washed several times. The obtained H-GNs can be redispersed readily in water by ultrasonication. Additionally, the preparation of pure graphene was similar to H-GNs except no addition of hemin.

Construction of the cholesterol biosensor: Glassy carbon electrode (GCE, $\Phi = 4$ mm) was polished with 0.3 and 0.05 µm alumina slurry, and then ultrasonically cleaned in ethanol and water thoroughly. After it was allowed to dry at room temperature, 10 µL H-GNs dispersed solution was dropped on the GCE. Subsequently, 5 µL ChOx (1 mg/mL in 0.1 M PBS, pH 7.0) solutions were dropped on the surface of

the electrode to construct a cholesterol biosensor (noted as ChOx/H-GNs/GCE). For comparison, ChOx/GNs/GCE was prepared similarly. The modified electrodes were stored at 4 °C for future use.

Fig. S1 Effect of luminol concentration on the ECL responses to cholesterol at ChOx/H-GNs/GCE in 0.05 M PBS (pH 7.4). Scan rate: 100 mV/s.

Fig. S2 The ECL responses of luminol (0.15 mM) at ChOx/H-GNs/GCE to (A) 0.38 mM cholesterol, (B) 2 mM ascorbic acid, (C) 2 mM uric acid, (D) 2 mM dopamine, and (E) 2 mM glycine in 0.05 M PBS (pH 7.4). Scan rate: 100 mV/s.

Electrode materials	Determine method	Linear range (µM)	Detection limit (µM)	Refs.
ChOx/Chi-IL/MWNT(SH)-Au	Chronoampertry	500-5000		2
ChOx-PPy/Pt	Chronoampertry	25-300	5.7	3
Gold electrode polymerized	Molecularly	5-30	0.42	4
with 2-MBI	imprinted polymers	5-50	0.42	
ChOx/p(pyrrole)/p(HEMA)	Chronoampertry	500-1500	120	5
ChOx/H-GNs/GCE	ECL	0.17-1120	0.06	This work

Table S1 Comparison of performance of some cholesterol sensors

ChOx, cholesterol oxidase. Chi, chitosan. IL, ionic liquid. MWNTs, multiwall carbon nanotubes. PPy, polypyrrole. MBI, maslach burnout inventory. p(HEMA), poly(2-hydroxyethyl methacrylate).

Table S2. Application	of the biosensor	for determination	the recovery of	cholesterol.
-----------------------	------------------	-------------------	-----------------	--------------

Sample	Detected ^a (µM)	Added (µM)	Found ^a (μ M)	Recovery (%)
1	10.0	10.0	20.5±0.8	102.5
2	10.0	15.0	25.7±1.5	102.8
3	15.0	25.0	44.8 ± 1.8	112.0
4	75.0	75.0	150.8 ± 2.0	100.5
5	150.0	200.0	345.1±0.9	98.6
6	300.0	400.0	699.4±0.6	99.9

All samples were analyzed using standard addition method (n = 3).

^a Mean value \pm standard deviation (n = 3).

References

- Y.J. Guo, L. Deng, L. Li, S.J. Guo, E.K. Wang, S.J. Dong, ACS Nano, 2011, 5, 1282–1290.
- 2. A.L. Gopalan, K.P. Lee, D. Ragupathy, Biosens. Bioelectron., 2009, 24, 2211–2217.
- 3. J.C. Vidal, E. Garcia, J.R. Castillo, Anal. Chim. Acta., 1999, 385, 213-222.
- 4. A. Aghaei, M.R.M. Hosseini, M. Najafi, Electrochim. Acta., 2010, 55, 1503–1508.
- 5. S. Brahim, D. Narinesingh, A. Guiseppi-Elie, Anal. Chim. Acta., 2001, 448, 27-36.