A cathodic electrogenerated chemiluminescence biosensor based on

luminol and hemin-graphene nanosheets for cholesterol detection

Meihe Zhang, Ruo Yuan*, Yaqin Chai, Shihong Chen, Xia Zhong, Huaan Zhong, Cun Wang
Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China

Materials: Graphene oxide was purchased from Nanjing xianfeng nano Co. (Nanjing, China). Hemin, cholesterol oxidase (ChOx, EC 1.1.3.6, ≥ 50 units/mg, from Brevibacterium sp.), cholesterol $\left(\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}, \mathrm{M}_{\mathrm{r}}: 386.67, \geq 99 \%\right.$ purity, from lanolin $)$, and Triton X-100 $\left(\mathrm{C}_{34} \mathrm{H}_{62} \mathrm{O}_{11}\right.$, MW: 646.85) were obtained from Sigma Chemical Co. (St. Louis, MO, USA). Phosphate buffer solutions (PBS, containing $0.9 \% \mathrm{NaCl}$) with pH 7.4 were prepared with $0.05 \mathrm{M} \mathrm{KH}_{2} \mathrm{PO}_{4}$ and $0.05 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$. The stock solution was prepared by dissolving cholesterol in the mixture of 2-propanol and Triton X-100, and then diluted it only with Triton X-100 solution for preparing standard solutions. Other chemicals used were of analytical grade and were used as received. Double distilled water was used throughout this study.

Apparatus and measurements: Cyclic voltammetry (CV) was performed with a CHI 600D electrochemical work station (Shanghai Chenhua Instruments Co., China). The ECL emission was monitored with a model MPI-A electrochemiluminescence analyzer (Xi'an Remax Electronic Science \& Technology Co. Ltd., China) with the
voltage of the photomultiplier tube (PMT) set at 600 V in the process of detection. All experiments were performed with a conventional three-electrode system. The modified glassy carbon electrode (GCE) as working electrode, a platinum wire as counter electrode and a saturated calomel electrode (SCE) or $\mathrm{Ag} / \mathrm{AgCl}($ sat. KCl) as reference electrode. The UV-Vis absorption spectra were recorded in the range of 200-800 nm, using a UV-Vis spectrometer (UV-Vis 8500). All the electrochemical experiments were carried out at room temperature.

Preparation of hemin-graphene nanosheets: According to Guo's work ${ }^{1}$, hemin-graphene nanosheets (H-GNs) were synthesized with a simple wet-chemical strategy through the $\pi-\pi$ interactions. First, 20.0 mL of the homogeneous graphene oxide dispersion ($0.5 \mathrm{mg} / \mathrm{mL}$) was mixed with 20.0 mL of $0.5 \mathrm{mg} / \mathrm{mL}$ hemin aqueous solution and $200.0 \mu \mathrm{~L}$ of ammonia solution, followed by the addition of $30 \mu \mathrm{~L}$ of hydrazine solution. After being vigorously stirred for a few minutes, the vial was put in a water bath $\left(60{ }^{\circ} \mathrm{C}\right)$ for 3.5 h . Finally, the product was obtained by filtration and washed several times. The obtained $\mathrm{H}-\mathrm{GNs}$ can be redispersed readily in water by ultrasonication. Additionally, the preparation of pure graphene was similar to $\mathrm{H}-\mathrm{GNs}$ except no addition of hemin.

Construction of the cholesterol biosensor: Glassy carbon electrode (GCE, $\Phi=4$ mm) was polished with 0.3 and $0.05 \mu \mathrm{~m}$ alumina slurry, and then ultrasonically cleaned in ethanol and water thoroughly. After it was allowed to dry at room temperature, $10 \mu \mathrm{~L}$ H-GNs dispersed solution was dropped on the GCE. Subsequently, $5 \mu \mathrm{LChOx}(1 \mathrm{mg} / \mathrm{mL}$ in $0.1 \mathrm{M} \mathrm{PBS}, \mathrm{pH} 7.0)$ solutions were dropped on the surface of
the electrode to construct a cholesterol biosensor (noted as $\mathrm{ChOx} / \mathrm{H}-\mathrm{GNs} / \mathrm{GCE}$). For comparison, $\mathrm{ChOx} / \mathrm{GNs} / \mathrm{GCE}$ was prepared similarly. The modified electrodes were stored at $4^{\circ} \mathrm{C}$ for future use.

Fig. S1 Effect of luminol concentration on the ECL responses to cholesterol at ChOx/H-GNs/GCE in 0.05 M PBS (pH 7.4). Scan rate: $100 \mathrm{mV} / \mathrm{s}$.

Fig. S2 The ECL responses of luminol $(0.15 \mathrm{mM})$ at $\mathrm{ChOx} / \mathrm{H}-\mathrm{GNs} / \mathrm{GCE}$ to (A) 0.38 mM cholesterol, (B) 2 mM ascorbic acid, (C) 2 mM uric acid, (D) 2 mM dopamine, and (E) 2 mM glycine in 0.05 M PBS (pH 7.4). Scan rate: $100 \mathrm{mV} / \mathrm{s}$.

Table S1 Comparison of performance of some cholesterol sensors

Electrode materials	Determine method	Linear range $(\mu \mathrm{M})$	Detection limit $(\mu \mathrm{M})$	Refs.
ChOx/Chi-IL/MWNT(SH)-Au	Chronoampertry	$500-5000$	-	2
ChOx-PPy/Pt	Chronoampertry	$25-300$	5.7	3
Gold electrode polymerized	Molecularly with 2-MBI	$5-30$	0.42	4
ChOx/p(pyrrole)/p(HEMA)	Chronoampertry	$500-1500$	120	5
ChOx/H-GNs/GCE	ECL	$0.17-1120$	0.06	This work

ChOx, cholesterol oxidase. Chi, chitosan. IL, ionic liquid. MWNTs, multiwall carbon nanotubes. PPy, polypyrrole. MBI, maslach burnout inventory. p(HEMA), poly(2-hydroxyethyl methacrylate).

Table S2. Application of the biosensor for determination the recovery of cholesterol.

Sample	Detected $^{\mathrm{a}}(\mu \mathrm{M})$	Added $(\mu \mathrm{M})$	Found $^{\mathrm{a}}(\mu \mathrm{M})$	Recovery $(\%)$
1	10.0	10.0	20.5 ± 0.8	102.5
2	10.0	15.0	25.7 ± 1.5	102.8
3	15.0	25.0	44.8 ± 1.8	112.0
4	75.0	75.0	150.8 ± 2.0	100.5
5	150.0	200.0	345.1 ± 0.9	98.6
6	300.0	400.0	699.4 ± 0.6	99.9

All samples were analyzed using standard addition method ($\mathrm{n}=3$).
${ }^{a}$ Mean value \pm standard deviation ($n=3$).

References

1. Y.J. Guo, L. Deng, L. Li, S.J. Guo, E.K. Wang, S.J. Dong, ACS Nano, 2011, 5, 1282-1290.
2. A.L. Gopalan, K.P. Lee, D. Ragupathy, Biosens. Bioelectron., 2009, 24, 2211-2217.
3. J.C. Vidal, E. Garcia, J.R. Castillo, Anal. Chim. Acta., 1999, 385, 213-222.
4. A. Aghaei, M.R.M. Hosseini, M. Najafi, Electrochim. Acta., 2010, 55, 1503-1508.
5. S. Brahim, D. Narinesingh, A. Guiseppi-Elie, Anal. Chim. Acta., 2001, 448, 27-36.
