Supplementary Information

Plasmon-enhanced hydrogen evolution on Au-InVO₄ hybrid microspheres

Shao-Wen Cao,^{*a*} Jun Fang,^{*a*} Mohammad Mehdi Shahjamali,^{*a*} Freddy Y. C. Boey,^{*a*} James Barber,^{*a*, *b*} Say Chye Joachim Loo^{**a*} and Can Xue^{**a*}

^a Solar Fuels Laboratory, School of Materials Science and Engineering, Nanyang Technological University,50 Nanyang Avenue, Singapore 639798 (Singapore). E-mail: cxue@ntu.edu.sg, joachimloo@ntu.edu.sg ^b Division of Molecular Biosciences, Imperial College London, South Kensington Campus London SW7 2AZ, U.K.

Experimental details

Synthesis of InVO₄ hollow microshpheres: In a typical procedure, while stirring, 0.5 mmol of InCl₃ was initially dissolved in 50 mL ultrapure water, followed by the addition of 0.5 mmol of NH₄VO₃. Then 0.3 mL of 1 M aqueous ethanolamine solution was added into the mixture. The resultant suspension was sealed in a 100 mL teflon-lined stainless-steel autoclave. The autoclave was heated to and maintained at 160 °C for 12 hours, and allowed to cool to room temperature. The product was collected after centrifugation, washed with water repeatedly, and then dried in a vacuum oven.

Synthesis of Au-InVO₄ hybrid microshpheres: 60 mg of the as-prepared InVO₄ powder was suspended in 20 mL ultrapure water followed by the addition of 5 mL aqueous solution of 0.01 M L-cysteine. The mixture was subjected to sonication for 30 minutes followed by the addition of different amount of 3 mM HAuCl₄ aqueous solution (2.5, 5, 10 mL for 2, 4, 7.5 wt% Au-InVO₄, respectively). After vigorous

stirring for another 30 minutes, different amount of 0.05 M L-ascorbic acid aqueous solution (5, 10, 20 mL for 2, 4, 7.5 wt% Au-InVO₄, respectively) was quickly added into the solution. The reaction was allowed for rapid stirring for 3 hours. The products were separated via centrifugation, washed with water repeatedly, and dried in a vacuum oven.

*Synthesis of Pt-InVO*⁴ *hybrid microshpheres:* Platinum nanoparticles are grown on the InVO₄ hollow microspheress follows: 60 mg of the as-obtained InVO₄ powder was suspended in 20 mL ultrapure water followed by the addition of 5 mL aqueous solution of 0.01 M L-cysteine. The mixture was allowed for sonication for 30 minutes followed by introducing 5 mL aqueous solution of 3 mM H₂PtCl₆. After vigorous stirring for another 30 minutes, 10 mL aqueous solution of 0.05 M L-ascorbic acid was quickly added into the solution. The reaction was allowed for rapid stirring for 3 hours. The products were separated via centrifugation, washed with water repeatedly, and dried in a vacuum oven.

Characterization: X-ray powder diffraction (XRD) patterns were recorded on a Shimadzu XRD-6000 X-ray diffractometer (Cu K α source) at a scan rate of 1 °/min with the 2 θ range from 10 to 70°. The field emission scanning electron microscopy (FESEM) images and energy dispersive X-ray spectra (EDX) were taken with a JEOL JSM-7600F scanning electron microscope equipped with energy dispersive X-ray analysis system. Transmission electron microscopy (TEM) images were recorded on a JEOL JEM-2100F transmission electron microscope at an accelerating voltage of 200 kV. UV–vis diffuse reflectance spectra (DRS) were recorded on a Lambda 750

UV/Vis/NIR spectrophotometer (Perkin Elmer, USA). X-ray Photoelectron spectroscopy (XPS) measurement was performed on a Thermo Scientific Theta Probe XPS with monochromatized Al K α (*hv*=1486.6 eV) source.

Photocatalytic hydrogen evolution from water splitting: Typically, 10 mg of the prepared Au-InVO₄ hybrid microshperes were suspended in 10 mL aqueous solution of 0.1 M L-ascorbic acid. The pH value was adjusted to 4.0 by using 1 M NaOH aqueous solution. The suspension was purged with nitrogen for 3 hours to drive away the residual air before sealed in a quartz flask. The photocatalytic hydrogen evolution was carried out by irradiating the suspension with a 300-W xenon lamp (MAX-302, Asahi Spectra, USA) coupled with a UV cut-off filter ($\lambda > 420$ nm). The gas product composition was analyzed every 30 min by an Agilent 7890A gas chromatograph (GC) with TCD detector.

Fig. S1 XRD pattern of InVO₄ microspheres (JCPDS No. 48-0898).

Fig. S2 characterization of 2 wt% Au-InVO₄ microspheres: (a) SEM image; (b) TEM image; (c) TEM image from the edge of a single Au-InVO₄ microsphere; (d) EDX spectrum.

Fig. S3 characterization of 4 wt% Au-InVO₄ microspheres: (a) SEM image; (b) TEM image from the edge of a single Au-InVO₄ microsphere; (c) EDX spectrum.

Fig. S4 characterization of 7.5 wt% Au-InVO₄ microspheres: (a) SEM image; (b) TEM image; (c) TEM image from the edge of a single Au-InVO₄ microsphere; (d) EDX spectrum.

Fig. S5 Photocatalytic H₂ evolution versus visible-light ($\lambda > 420$ nm) irradiation time for 4 wt% Au-InVO₄ microspheres at pH 4.0.

Fig. S6 characterization of 4 wt% Pt-InVO₄ microspheres: (a) SEM image; (b) TEM image; (c) TEM image from the edge of a single Pt-InVO₄ hollow microsphere; (d) EDX spectrum, the estimated Pt content is around 4 wt %.

Fig. S7. The XPS spectra of the Au-InVO4 and Pt-InVO4 sample, showing the binding energy of Au 4f (84.1 and 87.8 eV) and Pt 4f (71.2 and 74.6 eV).

Fig. S8 Photocatalytic H₂ evolution amount at pH 4.0 after 3h visible-light ($\lambda > 420$ nm) irradiation for Pt-InVO₄ samples.

Fig. S9 TEM images for samples used in photocatalytic reaction after visible-light irradiation: (a) 2 wt% Au-InVO₄ at 3h; (b) 4 wt% Au-InVO₄ at 3h; (c) 7.5 wt% Au-InVO₄ at 3h; (d) 4 wt% Au-InVO₄ at 18h. (e) EDX spectrum for 4 wt% Au-InVO₄ after 18h visible-light irradiation.