Formation of unexpected α-amino amidine through three-component 'UGI condensation reaction'

Abu T. Khan*^a Sidick Basha R,^a Mohan Lal^a and Mohammad Hedayetullah Mir^b

^aDepartment of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781 039, India

^bDepartment of Chemistry, Aliah University, DN41 Salt Lake, Kolkata -700 091, India

Tel.: +91 361 2582305; fax: +91 361 2582349

atk@iitg.ernet.in (A.T. Khan)

Table of Contents

General information and spectral data	.P2- P7
Crystal data	P8-P26
Copies of ¹ H and ¹³ C NMR spectra and HRMS	P27-P44

General information:

Melting points were determined on a Büchi melting point apparatus and are uncorrected. IR spectra were recorded on Perkin-Elmer 281 IR spectrophotometer. ¹H and ¹³C NMR spectra were recorded on Varian 400 spectrometer TMS as internal reference; chemical shifts (δ scale) are reported in parts per million (ppm). ¹H NMR Spectra are reported in the order: multiplicity, coupling constant (J value) in hertz (Hz) and no of protons; signals were characterized as s (singlet), d (doublet), t (triplet), m (multiplet), and dd (doublet of doublet), bs (broad). HRMS spectrometry data was collected on Agilent Technologies 6520 Accurate-Mass Q-TOF LC/MS Elemental analyses were carried out using Perkin-Elmer 2400 Series II CHNS/O analyzer at the Department of Chemistry, Indian Institute of Technology, Guwahati. The X-ray crystal structures were determined with a Siemen P-4 diffractometer.

N-tert-Butyl-N', *2-diphenyl-2-(phenyl amino)acetamidine* (**5a**): Yield = 92%, white solid, mp 134 °C, IR (KBr) v_{max} 3389, 3027, 2963, 2906, 1634, 1601, 1591, 1485, 1310, 1253, 1220, 1185, 1166, 1070 cm ⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.22 (m, 5H), 7.14 (dd, *J* = 2 Hz, *J* = 8 Hz, 2H), 7.03(t, *J* = 8 Hz, 2H), 6.86-6.81 (m, 2H), 6.70 (d, *J* = 7.6 Hz, 2H), 6.48 (d, *J* = 7.2 Hz, 2H), 5.90 (bs, 1H, NH), 4.92 (s, 1H), 3.71 (bs, 1H, NH), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 154.0, 150.7, 147.3, 140.0, 129.4, 128.9, 128.6, 128.4, 128.2, 122.4, 121.3, 119.5, 113.9, 60.0, 51.0, 28.5. Anal. Calcd for C₂₄H₂₇N₃ (357.49): C, 80.63; H, 7.61; N, 11.75. Found: C, 80.54; H, 7.53; N, 11.66.

2-(4-Chlorophenylamino)-N-tert-butyl-2-(4-bromophenyl)-N'-(4-chlorophenyl)acetamidine (**5b**): Yield = 85%, pale yellow solid, mp 190 °C, IR (KBr) v_{max} 3382, 2963, 1640, 1485, 1259, 1084 cm ⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, *J* = 8.4 Hz, 2H), 7.19 (d, *J* = 8.8 Hz, 2H), 7.03 (dd, *J* = 4.0 Hz, *J* = 8.8 Hz, 4H), 6.57 (d, *J* = 8.8 Hz, 2H), 6.38 (d, *J* = 8.4 Hz, 2H), 5.79 (bs, 1H, NH), 4.79 (s, 1H), 3.68 (bs, 1H, NH), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 153.5, 149.1, 145.3, 138.3, 135.1, 132.4, 129.8, 129.5, 128.8, 126.7, 124.8, 123.5, 115.0, 59.4, 51.4, 28.5. Anal. Calcd for C₂₄H₂₄BrCl₂N₃ (505.28): C, 57.05; H, 4.79; N, 8.32. Found: C, 56.92; H, 4.70; N, 8.21. HRMS (ESI) calcd for C₂₄H₂₄BrCl₂N₃ [M + H] 506.0581 found 506.0600.

2-(4-Bromophenylamino)-N-tert-butyl-N',2-bis(4-bromophenyl)acetamidine (**5c**): Yield = 77%, pale yellow solid, mp 182 °C, IR (KBr) v_{max} 3381, 2965, 2901, 1641, 1591, 1581, 1506, 1488, 1388, 1253, 1180, 1164, 1070 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 7.02 (d, J = 8.0 Hz, 2H), 6.52 (d, J = 8.8 Hz, 2H), 6.33 (d, J = 8.4 Hz, 2H), 5.77 (bs, 1H, NH), 4.78 (s, 1H), 3.71 (bs, 1H, NH), 1.42 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 153.4, 149.5, 145.7, 138.2, 132.4, 131.7, 129.8, 124.0, 122.9 (2C), 115.4, 114.3, 111.9, 59.3, 51.4, 28.4. Anal. Calcd for C₂₄H₂₄Br₃N₃ (594.18): C, 48.51; H, 4.07; N, 7.07. Found: C, 48.42; H, 3.98; N, 6.97.

2-(4-Chlorophenylamino)-N-tert-butyl-N',2-bis(4-chlorophenyl)acetamidine (**5d**): Yield = 93%, white solid, mp 180 °C, IR (KBr) v_{max} 3384, 2967, 2901, 1641, 1491, 1482, 1284, 1253, 1180, 1088 cm⁻¹; ¹H NMR(400 MHz, CDCl₃): δ 7.28 (d, *J* = 8.4 Hz, 2H), 7.19 (d, *J* = 8.8 Hz, 2H), 7.08 (d, *J* = 8.4 Hz, 2H), 7.03 (d, *J* = 8.4 Hz, 2H), 6.57 (d, *J* = 8.8 Hz, 2H), 6.38 (d, *J* = 8.4 Hz, 2H), 5.80 (bs, 1H, NH), 4.80 (s, 1H), 3.68 (bs, 1H, NH), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 153.6, 149.1, 145.4, 137.8, 134.8, 129.6, 129.5,129.4, 128.8, 126.7, 124.8, 123.6, 115.0, 59.4, 51.4, 28.5. Anal. Calcd for C₂₄H₂₄Cl₃N₃ (460.83): C, 62.55; H, 5.25; N, 9.12. Found: C, 62.44; H, 5.17; N, 9.02.

2-(4-Chlorophenylamino)-N-tert-butyl-N'-(4-chlorophenyl)-2-(4-fluorophenyl)acetamidine (**5e**): Yield = 89 %, white solid, mp 153° C, IR (KBr) v_{max} 3408, 3386, 2964, 2924, 1634, 1601, 1509, 1494, 1483, 1230, 1181, 1157, 1086 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.19 (d, *J* = 9.2 Hz, 2H), 7.25-7.10 (m, 2H), 7.03-6.97 (m, 4H), 6.58 (d, *J* = 8.8 Hz, 2H), 6.37 (d, *J* = 8.8 Hz, 2H), 5.83 (bs, 1H, NH), 4.80 (d, *J* = 1.6 Hz, 1H), 3.69 (bs, 1H, NH), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 153.9, 149.1, 145.5, 135.1, 130.0, 129.5, 128.7, 126.6, 124.7, 123.5, 116.2, 116.0, 115.0, 59.4, 51.3, 28.5. Anal. Calcd for C₂₄H₂₄Cl₂FN₃ (444.37): C, 64.87; H, 5.44; N, 9.46. Found: C, 64.76; H, 5.38; N, 9.34.

2-(4-Bromophenylamino)-N-tert-butyl-N'-(4-bromophenyl)-2-(4-nitrophenyl)acetamidine (5f): Yield = 76%, yellow solid, mp 218 °C, IR (KBr) v_{max} 3384, 2960, 1634, 1522, 1492, 1479, 1347, 1182 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.17 (d, *J* = 8.8 Hz, 2H), 7.37-7.32 (m, 4H), 7.18 (d, *J* = 8.4 Hz, 2H), 6.55 (d, *J* = 8.8 Hz, 2H), 6.33 (d, *J* = 8.8 Hz, 2H), 5.77 (bs, 1H, NH), 4.99 (d, *J* = 1.6 Hz, 1H), 3.73 (bs, 1H, NH), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) : δ 152.7, 149.3, 148.0, 145.9, 145.4, 132.5, 131.9, 129.3, 124.4, 123.8, 115.6, 114.6, 112.4, 59.2, 51.6, 28.4. Anal. Calcd for C₂₄H₂₄Br₂N₄O₂ (560.28): C, 51.45; H, 4.32; N, 10.00. Found: C, 51.32; H, 4.26; N, 9.90.

2-(4-Bromophenylamino)-N-tert-butyl-N'-(4-bromophenyl)-2-(3,4,5-trimethoxyphenyl)

acetamidine (**5g**): Yield = 82%, white solid, mp 215°C, IR (KBr) v_{max} 3382, 3362, 2958, 2935, 1637, 1595, 1508, 1481, 1329, 1131 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.34 (d, *J* = 8.4 Hz, 2H), 7.17 (d, *J* = 8.8 Hz, 2H), 6.54 (d, *J* = 8.8 Hz, 2H), 6.36 (d, *J* = 8.4 Hz, 2H), 6.32 (s, 2H), 5.89 (bs, 1H, NH), 4.71 (s, 1H), 3.85 (s, 3H), 3.76 (s, 7H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 153.9, 153.6, 149.9, 146.1, 138.3, 134.6, 132.4, 131.6, 124.3, 115.5, 114.1, 111.8, 105.1, 61.2, 60.5, 56.3, 51.3, 28.6. Anal. Calcd for C₂₇H₃₁Br₂N₃O₃ (605.36): C, 53.57; H, 5.16; N, 6.94. Found: C, 53.42; H, 5.08; N, 6.85.

2-(4-Bromophenylamino)-N-tert-butyl-N'-(4-bromophenyl)-2-(2-nitrophenyl)acetamidine (**5h**): Yield = 75%, light yellow, mp 198°C, IR (KBr) v_{max} 3357, 3298, 2969, 2956, 1615, 1580, 1520, 1480, 1347, 1258, 1181, 1071 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, J = 8.8 Hz, 1H), 7.61-7.60 (m, 2H), 7.50-7.45 (m, 1H), 7.34 (d, J = 8.8 Hz, 2H), 7.06 (d, J = 8.8 Hz, 2H), 6.55 (d, J = 8.8 Hz, 2H), 6.16 (d, J = 8.8 Hz, 2H), 5.98 (bs, 1H, NH), 5.34 (d, J = 3.2 Hz, 1H), 3.94 (bs, 1H, NH), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 153.4, 149.3, 149.0, 145.8, 133.7, 133.0, 132.4, 131.7, 130.0, 129.8, 125.0, 123.4, 115.7, 114.4, 112.3, 56.1, 51.6, 28.4. Anal. Calcd for C₂₄H₂₄Br₂N₄O₂ (560.28): C, 51.45; H, 4.32; N, 10.00. Found: C, 51.34; H, 4.25; N, 9.90.

N'-(4-Bromophenyl)-2-(4-bromophenylamino)-N-tert-butyl-2-(2-chlorophenyl)acetamidine (**5i**): Yield = 65 %, white solid, mp 166°C, IR (KBr) v_{max} 3373, 2966, 1719, 1669, 1633, 1588, 1492, 1373, 1212, 1127, 1071, 1033 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, *J* = 6.4 Hz, 1H), 7.34-7.29 (m, 5H), 7.11 (d, *J* = 8.8 Hz, 2H), 6.54 (d, *J* = 8.8 Hz, 2H), 6.27 (d, *J* = 8.8 Hz, 2H), 5.89 (bs, 1H, NH), 5.16 (s, 1H), 3.65 (bs, 1H, NH), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 153.7, 149.6, 146.3, 136.7, 134.9, 132.3, 131.8, 131.6, 130.2, 129.1, 127.4, 123.6, 115.4, 114.2, 111.9, 57.1, 51.4, 28.5. Anal. Calcd for $C_{24}H_{24}Br_2ClN_3$ (549.73): C, 52.44; H, 4.40; N, 7.64. Found: C, 52.38; H, 4.28; N, 7.52.

2-(4-Chlorophenylamino)-N-tert-butyl-N'-(4-chlorophenyl)-2-(2,4-dimethoxyphenyl)acetamidine(**5j**): Yield = 78%, white solid, mp 140°C, IR (KBr) v_{max} 3358, 2962, 2838, 1614, 1587, 1509, 1493, 1482, 1290, 1207, 1171, 1098, 1032 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.30 (d, *J* = 8.4 Hz, 1H), 7.17 (d, *J* = 8.8 Hz, 2H), 6.96 (d, *J* = 8.8 Hz, 2H), 6.56 (d, *J* = 9.2 Hz, 2H), 6.47 (dd, *J* = 2.4 Hz, *J* = 8.4 Hz, 1H), 6.33 (d, *J* = 8.4 Hz, 2H), 6.28 (d, *J* = 2 Hz, 1H),5.92 (bs, 1H, NH), 5.05 (s, 1H), 3.82 (s, 3H), 3.64 (bs, 1H, NH), 3.42 (s, 3H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 161.3, 158.0, 155.3, 149.8, 146.3, 129.2, 129.0, 128.3, 126.0, 124.0, 123.6, 120.1, 115.0, 104.6, 98.5, 55.5, 55.4, 53.4, 51.1, 28.5. Anal. Calcd for C₂₆H₂₉Cl₂N₃O₂ (486.43): C, 64.20; H, 6.01; N, 8.64. Found: C, 64.08; H, 5.93; N, 8.56.

2-(4-Chlorophenylamino)-N-tert-butyl-2-(2-chlorophenyl)-N'-(4-chlorophenyl)acetamidine (**5k**): Yield = 87 %, white solid, mp 188°C, IR (KBr) v_{max} 3401, 3371, 3045, 2961, 1634, 1599, 1513, 1494, 1482, 1182, 1089 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, *J* = 6.4 Hz, 1H), 7.31-7.27 (m, 3H), 7.19 (dd, *J* = 2 Hz, *J* = 6.8 Hz, 2H), 6.97 (dd, *J* = 2.4 Hz, *J* = 6.8 Hz, 2H), 6.59 (dd, *J* = 2.4 Hz, *J* = 7.2 Hz, 2H), 6.31 (dd, *J* = 2 Hz, *J* = 6.4 Hz, 2H), 5.90 (bs, 1H, NH), 5.16 (d, *J* = 2.0 Hz, 1H), 3.63 (bs, 1H, NH), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) : δ 153.9, 149.1, 145.8, 136.8, 134.9, 130.2, 129.4, 129.1, 128.7 (2C), 127.4, 126.6, 124.7, 123.2, 115.0, 57.2, 51.4, 28.5. Anal. Calcd for C₂₄H₂₄Cl₃N₃ (460.83): C, 62.55; H, 5.25; N, 9.12. Found: C, 62.44; H, 5.16; N, 9.02.

N-tert-Butyl-N'-(4-chlorophenyl)-2-(4-chlorophenylamino)2(3hydroxyphenyl)acetamidine (**5l**): Yield = 82 %, yellow solid, mp 192°C, IR (KBr) v_{max} 3384, 2964, 2924, 1630, 1597, 1586, 1493, 1484, 1454, 1251, 1089 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.17-7.10 (m, 3H), 6.99 (d, *J* = 8.4 Hz, 2H), 6.74 (d, *J* = 7.6 Hz, 1H), 6.65 (d, *J* = 7.2 Hz, 1H), 6.56 (s, 1H), 6.53 (d, *J* = 8.4 Hz, 2H), 6.40 (d, *J* = 8.4 Hz, 2H), 5.84 (bs, 1H, NH), 4.70 (s, 1H), 3.76 (bs, 1H, NH), 3.45 (bs, 1H, OH), 1.41 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) : δ 156.6, 154.3, 149.0, 145.5, 140.8, 130.4, 129.4, 128.6, 126.7, 124.5, 123.8, 120.0, 115.8, 115.0, 114.9, 60.0, 51.3, 28.5. Anal. Calcd for C₂₄H₂₅Cl₂N₃O (442.38): C, 65.16; H, 5.70; N, 9.50. Found: C, 65.04; H, 5.58; N, 9.42. *N-Cyclohexyl-N'*,2*-diphenyl-2-(phenyl amino)acetamidine* (**5m**): Yield = 85%, white solid, mp 148°C, IR (KBr) v_{max} 3373, 3238, 3023, 2928, 2853, 1621, 1589, 1517, 1495, 1484, 1313, 1259, 1199 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.28-7.22 (m, 5H), 7.12-7.05 (m, 4H), 6.85-6.80 (m, 2H), 6.69 (d, *J* = 8.0 Hz, 2H), 6.50 (d, *J* = 7.2 Hz, 2H), 5.97 (bs, 1H, NH), 4.97 (s, 1H), 3.94 (bs, 1H, NH), 2.13-2.05 (m, 2H), 1.45-1.40 (m, 4H), 1.30-1.07 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 155.2, 150.6, 147.2, 139.6, 129.3, 128.8, 128.5, 128.3, 128.1, 122.8, 121.6, 119.4, 113.8, 59.8, 48.6, 33.1, 32.6, 25.9, 25.0, 24.8. Anal. Calcd for C₂₆H₂₉N₃ (383.53): C, 81.42; H, 7.62; N, 10.96. Found: C, 81.32; H, 7.54; N, 10.88.

N',2-*bis*(4-*Chlorophenyl*)-2-(4-*chlorophenylamino*)-*N*-*cyclohexylacetamidine* (**5n**): Yield = 90%, pale yellow, mp 148°C, IR (KBr) v_{max} 3255, 2934, 2855, 1640, 1600, 14292, 1256, 1091, 1013 cm⁻¹; ¹H NMR (400 MHz, CDCl₃/DMSO): δ 7.25 (d, *J* = 7.2 Hz, 2H), 7.18 (dd, *J* = 7.2 Hz, *J* = 19.6 Hz, 4H), 6.99 (d, *J* = 6.8 Hz, 2H), 6.70 (d, *J* = 6.8 Hz, 2H), 6.56 (d, *J* = 7.6 Hz, 2H), 4.97 (s, 1H), 3.79 (bs, 1H, NH), 3.20 (bs, 1H, NH), 1.98 (bs, 1H), 1.74-1.53 (m, 5H), 1.36-1.15 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) : δ 161.5, 142.8, 132.8, 132.5, 131.8, 131.4, 128.1, 128.0, 127.5, 127.4, 126.7, 121.4, 113.5, 56.2, 50.7, 29.2, 23.0, 22.6 Anal. Calcd for C₂₆H₂₆Cl₃N₃ (486.86): C, 64.14; H, 5.38; N, 8.63 Found: C, 64.05; H, 5.29; N, 8.57.

N'-(4-chlorophenyl)-2-((4-chlorophenyl)amino)-N-cyclohexyl-2-phenylacetimidamide (50): Yield = 80%, White solid, mp 178 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.26 (m, 3H), 7.16 (d, J = 8.4 Hz, 2H), 7.10 (d, J = 6.8 Hz, 2H), 6.99 (d, J = 8 Hz, 2H), 6.55 (d, J = 8.4 Hz, 2H), 6.38 (d, J = 8.4 Hz, 2H), 5.93 (d, J = 7.6 Hz, 1H), 4.83 (bs, *NH*, 1H), 3.85 (bs, *NH*, 1H), 2.11-1.97 (m, 2H), 1.72-1.61 (m, 3H), 1.45-1.03 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) : δ 155.3, 148.9, 145.5, 138.8, 129.3, 129.1, 128.8, 128.6, 128.0, 126.9, 124.4, 124.0, 114.9, 59.9, 48.8, 33.1, 32.6, 25.8, 25.0, 24.9. Anal. Calcd for C₂₆H₂₇Cl₂N₃: C, 69.02; H, 6.02; N, 9.29 Found: C, 68.94; H, 5.92; N, 9.21.

N-cyclohexyl-N'-(3,4-dimethylphenyl)-2-((3,4-dimethylphenyl)amino)-2-(4-fluorophenyl)

acetimidamide (**5p**): Yield = 76%, Pale yellow solid, mp 175 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.10-7.06 (m, 2H), 6.98-6.91 (m, 2H), 6.80 (d, *J* = 7.6 Hz, 1H), 6.50 (d, *J* = 2Hz, 1H), 6.43 (dd, *J* = 2.4, *J* = 8 Hz, 1H), 6.25-6.22 (m, 2H), 5.93 (d, *J* = 8.4 Hz, 1H), 4.88 (bs, *NH*, 1H), 3.93-3.91 (m, 1H), 3.53 (bs, *NH*, 1H), 2.22 (s, 3H), 2.17 (s, 3H), 2.12 (s, 3H), 2.02 (s, 3H), 1.72-1.69 (m, 1H), 1.65-1.57 (m, 3H), 1.46-1.34 (m, 2H), 1.26-1.04 (m, 5H); 13 C NMR (100 MHz, CDCl₃) : δ 155.6, 148.1, 145.4, 137.5, 136.4, 136.1, 130.4, 130.0 (2C), 129.7, 129.4, 127.6, 124.2, 119.8, 115.7, 115.5, 111.4, 59.5, 48.6, 33.3, 32.7, 26.0, 25.2, 25.0, 20.1, 19.8, 19.1, 18.9. Anal. Calcd for C₃₀H₃₆FN₃: C, 78.74; H, 7.93; N, 9.18 Found: C, 78.63; H, 7.82; N, 9.05.

N'-(4-chlorophenyl)-2-((4-chlorophenyl)amino)-2-(4-fluorophenyl)-N-(2-morpholinoethyl)

acetimidamide (**5q**): Yield = 35%, brown solid, ¹H NMR (400 MHz, CDCl₃): δ 7.18-7.16 (m, 4H), 7.06-7.00 (m, 2H), 6.55 (d, *J* = 8.8 Hz, 2H), 6.42 (d, *J* = 8.4 Hz, 2H), 4.89 (s, 1H), 3.85 (bs, *NH*, 1H), 3.49-3.44 (m, 4H), 3.30 (bs, *NH*, 1H), 2.65-2.63 (m, 2H), 2.48-2.46 (m, 2H), 2.40-2.30 (m, 4H). Anal. Calcd for C₂₆H₂₇Cl₂FN₄O: C, 62.28; H, 5.43; N, 11.17 Found: C, 62.15; H, 5.32; N, 11.05.

Crystal data

Table 1. Crystal data and structure	e refinement for 5b .		
Identification code	5b		
Empirical formula	C24 H24 Br Cl2 N3		
Formula weight	505.27		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	Pna2(1)		
Unit cell dimensions	a = 13.3588(10) Å	$\alpha = 90^{\circ}$.	
	b = 10.7992(8) Å	β= 90°.	
	c = 16.6412(12) Å	$\gamma = 90^{\circ}.$	
Volume	2400.7(3) Å ³		
Z	4		
Density (calculated)	1.398 Mg/m ³		
Absorption coefficient	1.950 mm ⁻¹		
F(000)	1032		
Crystal size	? x ? x ? mm ³		
Theta range for data collection	2.25 to 28.44°.		
Index ranges	-17<=h<=17, -14<=k<=1	4, -22<=l<=22	
Reflections collected	29277		
Independent reflections	5976 [R(int) = 0.0367]		
Completeness to theta = 28.44°	99.6 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	5976 / 1 / 271		
Goodness-of-fit on F ²	0.993		

Table 1. Crystal data and structure refinement for **5b**

Final R indices [I>2sigma(I)]	R1 = 0.0323, wR2 = 0.0665
R indices (all data)	R1 = 0.0668, wR2 = 0.0770
Absolute structure parameter	0.008(7)
Largest diff. peak and hole	0.269 and -0.357 e.Å ⁻³

	Х	у	Z	U(eq)
Br(1)	4652(1)	3718(1)	2216(1)	71(1)
Cl(1)	13586(1)	6656(1)	1408(1)	82(1)
Cl(2)	6574(1)	9235(1)	-1600(1)	64(1)
C(1)	6689(2)	6878(3)	-1060(2)	51(1)
C(2)	7211(2)	7887(2)	-1328(1)	44(1)
C(3)	8231(2)	7846(2)	-1372(2)	51(1)
C(4)	8741(2)	6779(3)	-1172(2)	50(1)
C(5)	8228(2)	5727(2)	-918(1)	40(1)
C(6)	7198(2)	5801(3)	-864(2)	49(1)
C(7)	6181(2)	5266(3)	1581(2)	56(1)
C(8)	7095(2)	5497(2)	1228(2)	50(1)
C(9)	7736(2)	4545(2)	1008(1)	40(1)
C(10)	7421(2)	3337(2)	1157(2)	55(1)
C(11)	6517(2)	3100(2)	1513(2)	56(1)
C(12)	5908(2)	4069(3)	1722(2)	49(1)
C(13)	10453(2)	5073(2)	1303(1)	42(1)
C(14)	10936(2)	5464(3)	617(2)	60(1)
C(15)	11904(2)	5941(3)	655(2)	65(1)
C(16)	12380(2)	6030(2)	1377(2)	54(1)
C(17)	11910(2)	5667(2)	2067(2)	56(1)
C(18)	10960(2)	5189(2)	2032(1)	52(1)
C(19)	8504(3)	1823(3)	-1111(2)	80(1)
C(20)	9812(3)	888(3)	-247(2)	70(1)
C(21)	10289(3)	2498(3)	-1263(2)	86(1)
C(22)	8772(2)	4840(2)	671(1)	41(1)
C(23)	8950(2)	4148(2)	-125(1)	41(1)
C(24)	9481(2)	2069(2)	-677(2)	51(1)
N(1)	9344(2)	3001(2)	-43(1)	46(1)
N(2)	8733(2)	4598(2)	-816(1)	47(1)
N(3)	9505(2)	4524(2)	1287(1)	48(1)
		10		

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **5b**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

1.906(3)
1.748(3)
1.747(3)
1.369(4)
1.385(4)
1.365(4)
1.379(4)
1.392(4)
1.381(4)
1.404(3)
1.363(4)
1.378(4)
1.387(3)
1.393(3)
1.527(4)
1.370(4)
1.370(4)
1.377(4)
1.395(3)
1.398(3)
1.394(4)
1.362(4)
1.366(4)
1.371(4)
1.514(4)
1.527(4)
1.527(4)
1.458(3)
1.540(3)
1.282(3)
1.352(3)
1.471(3)

Table 3. Bond lengths [Å] and angles [°] for **5b**.

C(2)-C(1)-C(6)	119.6(3)
C(3)-C(2)-C(1)	120.1(2)
C(3)-C(2)-Cl(2)	119.9(2)
C(1)-C(2)-Cl(2)	120.0(2)
C(2)-C(3)-C(4)	120.4(3)
C(3)-C(4)-C(5)	120.8(3)
C(6)-C(5)-C(4)	117.6(2)
C(6)-C(5)-N(2)	121.4(2)
C(4)-C(5)-N(2)	120.6(2)
C(5)-C(6)-C(1)	121.5(3)
C(12)-C(7)-C(8)	118.9(3)
C(7)-C(8)-C(9)	121.6(2)
C(8)-C(9)-C(10)	117.5(2)
C(8)-C(9)-C(22)	120.1(2)
C(10)-C(9)-C(22)	122.3(2)
C(11)-C(10)-C(9)	121.2(2)
C(10)-C(11)-C(12)	119.4(3)
C(7)-C(12)-C(11)	121.4(3)
C(7)-C(12)-Br(1)	119.9(2)
C(11)-C(12)-Br(1)	118.7(2)
C(14)-C(13)-C(18)	117.7(2)
C(14)-C(13)-N(3)	122.6(2)
C(18)-C(13)-N(3)	119.6(2)
C(13)-C(14)-C(15)	120.8(3)
C(16)-C(15)-C(14)	119.9(3)
C(15)-C(16)-C(17)	120.4(3)
C(15)-C(16)-Cl(1)	118.9(2)
C(17)-C(16)-Cl(1)	120.6(2)
C(16)-C(17)-C(18)	119.8(2)
C(17)-C(18)-C(13)	121.4(2)
N(3)-C(22)-C(9)	107.60(19)
N(3)-C(22)-C(23)	112.80(19)
C(9)-C(22)-C(23)	110.80(19)
N(2)-C(23)-N(1)	121.8(2)
N(2)-C(23)-C(22)	123.6(2)

N(1)-C(23)-C(22)	114.6(2)
N(1)-C(24)-C(19)	110.8(2)
N(1)-C(24)-C(21)	109.8(2)
C(19)-C(24)-C(21)	111.0(3)
N(1)-C(24)-C(20)	105.7(2)
C(19)-C(24)-C(20)	109.1(3)
C(21)-C(24)-C(20)	110.3(3)
C(23)-N(1)-C(24)	127.1(2)
C(23)-N(2)-C(5)	123.2(2)
C(13)-N(3)-C(22)	121.5(2)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(1)	52(1)	83(1)	77(1)	16(1)	10(1)	-4(1)
Cl(1)	51(1)	76(1)	121(1)	24(1)	-21(1)	-2(1)
Cl(2)	75(1)	55(1)	63(1)	6(1)	-9(1)	14(1)
C(1)	36(1)	60(2)	55(2)	4(1)	-7(1)	0(1)
C(2)	49(2)	48(2)	35(1)	-2(1)	-4(1)	4(1)
C(3)	55(2)	45(2)	54(2)	4(1)	7(1)	-8(1)
C(4)	38(1)	53(2)	59(2)	0(1)	7(1)	-2(1)
C(5)	45(2)	42(1)	32(1)	-2(1)	-3(1)	-1(1)
C(6)	46(2)	48(2)	54(2)	8(1)	-2(1)	-7(1)
C(7)	55(2)	50(2)	62(2)	-6(1)	5(1)	5(1)
C(8)	52(2)	35(1)	65(2)	-1(1)	1(1)	-2(1)
C(9)	46(2)	37(1)	36(1)	-1(1)	2(1)	-1(1)
C(10)	63(2)	40(1)	61(2)	2(1)	12(1)	5(1)
C(11)	60(2)	41(2)	66(2)	6(1)	8(1)	-7(1)
C(12)	48(2)	57(2)	41(1)	4(1)	4(1)	-5(1)
C(13)	53(2)	37(1)	36(1)	-1(1)	-3(1)	4(1)
C(14)	61(2)	77(2)	40(1)	13(1)	-6(1)	-11(2)
C(15)	61(2)	83(2)	50(2)	20(1)	1(2)	-4(2)
C(16)	51(2)	43(2)	69(2)	7(1)	-13(2)	6(1)
C(17)	67(2)	57(2)	44(2)	-5(1)	-16(1)	2(1)
C(18)	62(2)	57(2)	38(2)	0(1)	-2(1)	-1(1)
C(19)	87(2)	63(2)	89(2)	-22(2)	-33(2)	7(2)
C(20)	97(3)	49(2)	65(2)	-9(1)	-9(2)	21(2)
C(21)	97(3)	85(2)	76(2)	-7(2)	33(2)	13(2)
C(22)	50(2)	35(1)	38(1)	1(1)	0(1)	0(1)
C(23)	41(1)	41(1)	41(1)	-2(1)	2(1)	1(1)
C(24)	61(2)	43(2)	47(2)	-8(1)	-4(1)	7(1)
N(1)	55(1)	46(1)	38(1)	-2(1)	-2(1)	11(1)
N(2)	56(2)	47(1)	38(1)	0(1)	1(1)	9(1)
N(3)	58(1)	48(1)	36(1)	7(1)	-2(1)	-8(1)
				15		

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for **5b**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 \ a^{*2} U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}]$

	Х	у	Z	U(eq)
H(1A)	5996	6914	-1009	61
H(3A)	8584	8542	-1539	62
H(4A)	9435	6762	-1206	60
H(6A)	6838	5114	-691	59
H(7A)	5758	5914	1721	67
H(8A)	7287	6312	1135	60
H(10A)	7833	2679	1012	66
H(11A)	6318	2289	1612	67
H(14A)	10612	5410	124	71
H(15A)	12225	6199	188	78
H(17A)	12233	5744	2559	67
H(18A)	10647	4937	2503	63
H(19A)	8291	2563	-1382	120
H(19B)	8003	1579	-729	120
H(19C)	8599	1173	-1497	120
H(20A)	10437	1034	21	106
H(20B)	9894	235	-633	106
H(20C)	9314	654	140	106
H(21A)	10074	3244	-1525	129
H(21B)	10404	1866	-1658	129
H(21C)	10898	2655	-974	129
H(22A)	8811	5732	568	49
H(1B)	9534	2795	432	55
H(3C)	9352	3987	1648	57

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **5b**.

-		
Identification code	5n	
Empirical formula	C26 H26 Cl3 N3	
Formula weight	486.85	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/n	
Unit cell dimensions	a = 12.9999(9) Å	α= 90°.
	b = 11.9658(10) Å	$\beta = 92.120(4)^{\circ}.$
	c = 16.7478(12) Å	$\gamma = 90^{\circ}$.
Volume	2603.4(3) Å ³	
Z	4	
Density (calculated)	1.242 Mg/m ³	
Absorption coefficient	0.370 mm ⁻¹	
F(000)	1016	
Crystal size	? x ? x ? mm ³	
Theta range for data collection	1.95 to 26.49°.	
Index ranges	-13<=h<=15, -13<=k<=12, -20	<=l<=20
Reflections collected	21584	
Independent reflections	4970 [R(int) = 0.0450]	
Completeness to theta = 26.49°	92.4 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4970 / 0 / 289	
Goodness-of-fit on F ²	1.031	
Final R indices [I>2sigma(I)]	R1 = 0.0875, wR2 = 0.2237	
R indices (all data)	R1 = 0.1786, wR2 = 0.2754	
Largest diff. peak and hole	0.594 and -0.509 e.Å ⁻³	

Table 1. Crystal data and structure refinement for **5n**

	X	у	Z	U(eq)
Cl(1)	4674(1)	7238(2)	10673(1)	130(1)
Cl(3)	7714(1)	1262(3)	6988(2)	182(1)
N(1)	3100(2)	5619(3)	7519(2)	55(1)
N(2)	3443(3)	2564(3)	7596(2)	58(1)
C(13)	3194(3)	3627(3)	7954(2)	56(1)
C(14)	3021(3)	4578(4)	7349(2)	53(1)
N(3)	2756(3)	4243(3)	6608(2)	66(1)
C(4)	3471(3)	5952(3)	8288(2)	56(1)
C(15)	4442(3)	2286(4)	7433(2)	60(1)
Cl(2)	-461(2)	3228(2)	10016(2)	215(2)
C(3)	4506(4)	6150(4)	8425(3)	74(1)
C(7)	2264(4)	3495(4)	8455(3)	65(1)
C(16)	4715(4)	1163(4)	7372(3)	74(1)
C(6)	3181(4)	6566(4)	9628(3)	81(2)
C(21)	2640(4)	4960(4)	5907(2)	66(1)
C(1)	4222(5)	6734(4)	9758(3)	84(2)
C(12)	2351(5)	3621(4)	9277(3)	91(2)
C(8)	1320(4)	3263(4)	8117(4)	80(2)
C(5)	2812(4)	6187(4)	8892(3)	69(1)
C(19)	6195(5)	2758(7)	7199(3)	103(2)
C(17)	5706(5)	863(6)	7224(4)	101(2)
C(18)	6454(5)	1661(8)	7147(4)	106(2)
C(20)	5197(4)	3075(5)	7335(3)	78(1)
C(22)	3402(5)	4616(6)	5302(4)	114(2)
C(10)	608(7)	3320(6)	9420(6)	117(2)
C(26)	1593(4)	4951(6)	5574(3)	107(2)
C(23)	3273(5)	5276(7)	4527(4)	130(3)
C(2)	4882(4)	6524(5)	9155(3)	89(2)
C(9)	456(5)	3154(5)	8610(5)	108(2)
C(11)	1522(8)	3535(6)	9756(4)	122(2)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **5n**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(25)	1483(5)	5615(7)	4792(4)	130(3)
C(24)	2214(6)	5215(6)	4189(3)	118(2)

Cl(1)-C(1)	1.730(5)
Cl(3)-C(18)	1.736(6)
N(1)-C(14)	1.280(5)
N(1)-C(4)	1.416(5)
N(2)-C(15)	1.377(5)
N(2)-C(13)	1.449(5)
C(13)-C(7)	1.505(6)
C(13)-C(14)	1.536(6)
C(14)-N(3)	1.337(5)
N(3)-C(21)	1.458(5)
C(4)-C(3)	1.377(6)
C(4)-C(5)	1.379(6)
C(15)-C(20)	1.377(6)
C(15)-C(16)	1.395(6)
Cl(2)-C(10)	1.745(7)
C(3)-C(2)	1.376(6)
C(7)-C(8)	1.362(7)
C(7)-C(12)	1.386(7)
C(16)-C(17)	1.368(7)
C(6)-C(1)	1.377(7)
C(6)-C(5)	1.383(6)
C(21)-C(26)	1.453(7)
C(21)-C(22)	1.500(7)
C(1)-C(2)	1.372(7)
C(12)-C(11)	1.370(9)
C(8)-C(9)	1.424(8)
C(19)-C(18)	1.359(9)
C(19)-C(20)	1.378(8)
C(17)-C(18)	1.372(9)
C(22)-C(23)	1.524(8)
C(10)-C(11)	1.321(10)
C(10)-C(9)	1.378(10)
C(26)-C(25)	1.533(7)

Table 3. Bond lengths [Å] and angles $[\circ]$ for **5n**.

C(23)-C(24)	1.471(8)
C(25)-C(24)	1.490(9)
C(14)-N(1)-C(4)	119.9(3)
C(15)-N(2)-C(13)	121.4(3)
N(2)-C(13)-C(7)	109.6(3)
N(2)-C(13)-C(14)	114.0(3)
C(7)-C(13)-C(14)	110.2(3)
N(1)-C(14)-N(3)	121.0(4)
N(1)-C(14)-C(13)	124.4(4)
N(3)-C(14)-C(13)	114.6(4)
C(14)-N(3)-C(21)	125.9(4)
C(3)-C(4)-C(5)	118.2(4)
C(3)-C(4)-N(1)	119.8(4)
C(5)-C(4)-N(1)	121.7(4)
C(20)-C(15)-N(2)	122.7(4)
C(20)-C(15)-C(16)	117.8(4)
N(2)-C(15)-C(16)	119.5(4)
C(2)-C(3)-C(4)	121.1(5)
C(8)-C(7)-C(12)	118.3(5)
C(8)-C(7)-C(13)	121.3(4)
C(12)-C(7)-C(13)	120.3(5)
C(17)-C(16)-C(15)	120.7(5)
C(1)-C(6)-C(5)	119.6(5)
C(26)-C(21)-N(3)	111.9(4)
C(26)-C(21)-C(22)	111.7(4)
N(3)-C(21)-C(22)	109.4(4)
C(2)-C(1)-C(6)	119.7(5)
C(2)-C(1)-Cl(1)	120.9(5)
C(6)-C(1)-Cl(1)	119.3(5)
C(11)-C(12)-C(7)	122.4(6)
C(7)-C(8)-C(9)	119.7(6)
C(4)-C(5)-C(6)	121.1(4)
C(18)-C(19)-C(20)	120.9(6)
C(16)-C(17)-C(18)	120.7(6)

C(19)-C(18)-C(17)	119.2(5)
C(19)-C(18)-Cl(3)	120.9(6)
C(17)-C(18)-Cl(3)	119.9(6)
C(15)-C(20)-C(19)	120.7(6)
C(21)-C(22)-C(23)	112.3(5)
C(11)-C(10)-C(9)	122.8(7)
C(11)-C(10)-Cl(2)	119.5(8)
C(9)-C(10)-Cl(2)	117.7(7)
C(21)-C(26)-C(25)	112.4(5)
C(24)-C(23)-C(22)	111.9(5)
C(1)-C(2)-C(3)	120.1(5)
C(10)-C(9)-C(8)	118.0(6)
C(10)-C(11)-C(12)	118.7(7)
C(24)-C(25)-C(26)	111.7(6)
C(23)-C(24)-C(25)	109.6(5)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Cl(1)	141(2)	167(2)	78(1)	-35(1)	-43(1)	38(1)
Cl(3)	78(1)	282(3)	189(2)	40(2)	51(1)	54(2)
N(1)	57(2)	51(2)	57(2)	1(2)	-1(2)	-2(2)
N(2)	50(2)	50(2)	73(2)	-3(2)	-1(2)	-3(2)
C(13)	58(3)	52(3)	57(2)	2(2)	-2(2)	-1(2)
C(14)	45(2)	59(3)	56(3)	4(2)	-1(2)	-1(2)
N(3)	87(3)	50(2)	58(2)	3(2)	-14(2)	-7(2)
C(4)	62(3)	50(3)	56(3)	2(2)	-2(2)	0(2)
C(15)	61(3)	68(3)	53(3)	8(2)	3(2)	1(3)
Cl(2)	193(3)	207(3)	257(3)	1(2)	160(3)	-17(2)
C(3)	61(3)	90(4)	72(3)	-16(3)	1(2)	-2(3)
C(7)	72(3)	52(3)	71(3)	5(2)	14(3)	5(2)
C(16)	63(3)	75(4)	86(3)	4(3)	9(3)	8(3)
C(6)	87(4)	96(4)	61(3)	1(3)	5(3)	14(3)
C(21)	88(3)	56(3)	54(3)	2(2)	-6(2)	1(2)
C(1)	97(4)	87(4)	65(3)	-9(3)	-16(3)	18(3)
C(12)	112(5)	85(4)	77(4)	11(3)	18(3)	7(3)
C(8)	66(3)	68(3)	107(4)	-5(3)	18(3)	-1(3)
C(5)	65(3)	78(3)	65(3)	4(3)	1(2)	4(2)
C(19)	64(4)	147(6)	97(4)	41(4)	18(3)	-13(4)
C(17)	83(4)	113(5)	109(4)	2(4)	18(3)	30(4)
C(18)	60(4)	160(7)	99(4)	22(4)	28(3)	32(4)
C(20)	69(3)	87(4)	79(3)	13(3)	11(3)	-7(3)
C(22)	84(4)	160(6)	97(4)	29(4)	15(3)	5(4)
C(10)	116(6)	95(5)	144(7)	3(5)	69(6)	-1(4)
C(26)	77(4)	154(6)	89(4)	45(4)	-4(3)	8(4)
C(23)	110(5)	194(8)	87(4)	46(5)	22(4)	-5(5)
C(2)	70(3)	114(5)	83(4)	-19(3)	-14(3)	4(3)
C(9)	86(4)	75(4)	164(7)	3(4)	28(5)	-7(3)
C(11)	150(7)	122(6)	97(5)	13(4) 24	56(5)	0(5)

Table 4. Anisotropic displacement parameters (Å²x 10³) for **5n**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(25)	90(4)	183(7)	114(5)	72(5)	-16(4)	-2(5)
C(24)	146(6)	142(6)	64(4)	17(4)	-14(4)	-36(5)

	Х	У	Z	U(eq)
H(2A)	2957	2096	7482	70
H(13A)	3775	3839	8313	67
H(3A)	2643	3540	6540	79
H(3B)	4958	6028	8016	89
H(16A)	4219	612	7432	89
H(6A)	2728	6706	10034	97
H(21A)	2804	5726	6074	80
H(12A)	2996	3768	9513	109
H(8A)	1239	3176	7566	96
H(5A)	2107	6089	8803	83
H(19A)	6697	3303	7142	123
H(17A)	5874	112	7175	121
H(20A)	5032	3830	7360	94
H(22A)	3316	3826	5187	136
H(22B)	4093	4726	5525	136
H(26A)	1137	5267	5960	128
H(26B)	1382	4184	5475	128
H(23A)	3452	6052	4628	156
H(23B)	3743	4985	4141	156
H(2B)	5585	6636	9241	107
H(9A)	-192	2976	8392	130
H(11A)	1601	3627	10306	146
H(25A)	784	5543	4575	155
H(25B)	1610	6399	4901	155
H(24A)	2051	4450	4041	141
H(24B)	2150	5674	3713	141

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for **5n**.

