Supporting Information

Novel Pd based catalyst for the removal of organic and emerging contaminants

Mallikarjuna N. Nadagouda^{[a]*}, Ishan Desai^[b], Carlo Cruz^[a], Duck J. Yang^[c]

[a*] The U.S. Environmental Protection Agency, ORD, NRMRL, WSWRD, 26 W. Martin Luther King Dr. Cincinnati, Ohio 45268 Phone: 01-513-569-7232 E-mail: Nadagouda.mallikarjuna@epa.gov

[b] Environmental and Water Resources Engineering Division, Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843, United States

[c] Department of Chemistry, The University of Texas at Dallas 800 W Campbell, BE26, Richardson TX 75080. Phone: 972-883-6681

00-050-2241> (C₆H₁₀O₅)_N - Cellulose(100.0%)

Figure S1. The XRD pattern of control cellulose sample, coated with Polypyrrole. Red line- 2.882 M, blue line-1.441 M, and black line-0.2882 M of pyrrole used for the reaction.

Figure S2. The decoration of (a-b) Au nanoparticles on polypyrrole coated cellulose fibers, prepared using low concentration of pyrrole(0.2882 M)

Figure S3. The decoration of (a-b) Au nanoparticles on polypyrrole-coated cellulose fibers, prepared using a medium concentration of pyrrole (1.441 M).

Figure S4. SEM image of self-assembled Pd nanoparticles on cellulose nanofibers, prepared using a medium concentration of pyrrole (5 mL).

Element	Weight%	Atomic%
	_	
СК	51.59	67.62
N K	10.61	11.92
O K	13.15	12.93
Na K	2.40	1.64
S K	0.23	0.11
Cl K	8.87	3.94
Cu K	0.16	0.04
Pd L	11.10	1.64
Au L	1.89	0.15
Totals	100.00	

Table S1. EDS analysis of self-assembled Pd nanoparticles on cellulose nanofibers, prepared using a mediumconcentration of pyrrole (5 mL).

Figure S5. SEM image of self-assembled Pt nanoparticles on cellulose nanofibers, prepared using a high concentration of pyrrole (10 mL).

Element	Weight%	Atomic%	Compd%	Formula
Cl K Cu K Pt L Au L O	51.07 0.79 17.28 24.80 6.06	70.41 0.61 4.33 6.15 18.50	0.00 0.99 20.12 27.82	CuO PtO2 Au2O3
Totals	100.00			

Table S2. EDS analysis of self-assembled Pt nanoparticles on cellulose nanofibers, prepared using a high concentration of pyrrole (10 mL).

Figure S6. The decoration of Fe nanostructures on cellulose nanofibers, prepared using (a) 0.2882 M, (b) 1.441 M, and (c-d) 2.882 M of pyrrole.

Element	Weight%	Atomic%	Compd%	Formula
Al K Cl K	0.33	0.44 16.28	0.62 0.00	A12O3
Fe K	54.14	34.94	73.53	Fe2O3
Au L	8.78	1.61	9.85	Au2O3
0	20.75	46.74		
Totals	100.00			

Table S3. EDS analysis of self-assembled Fe nanoparticles on cellulose nanofibers, prepared using a high concentration of pyrrole (10 mL).

Figure S7. XRD pattern of Au nanostructures on polypyrrole-coated cellulose fibers prepared using (a) 0.2882 M, (b) 5, and (c) 2.882 M of pyrrole.

Figure S8. XRD patterns of Pd nanostructures on polypyrrole-coated cellulose fibers prepared using (a) 0.2882 M, (b) 1.441 M, and (c) 2.882 M of pyrrole.

Figure S9. XRD pattern of Pt nanostructures on polypyrrole-coated cellulose fibers prepared using (a) 0.2882 M, (b) 5, and (c) 2.882 M of pyrrole.

Figure S10. XRD patterns of iron nanoparticles formed on polypyrrole-coated cellulose fibers

Figure S11. SEM image of autocatalytic reduced Pd on 5 ml polypyrrole coated after cellulose fibers after microwave ignition for 1 minute.

Single point surface area at $P/Po = 0.299210665$:	59.6067 m²/g
BET Surface Area:	60.6141 m²/g
Langmuir Surface Area:	101.3300 m ² /g
t-Plot Micropore Area:	4.5622 m²/g
t-Plot External Surface Area:	56.0518 m²/g
BJH Adsorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter:	52.0934 m²/g
BJH Desorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter:	64.8865 m²/g
Single point adsorption total pore volume of pores less than 2330.929 Å diameter at P/Po = 0.991644095:	0.112058 cm³/g
t-Plot micropore volume:	0.002351 cm ³ /g
BJH Adsorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter:	0.107117 cm³/g
BJH Desorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter:	0.108777 cm ³ /g
Adsorption average pore width (4V/A by BET):	73.9483 Å
BJH Adsorption average pore diameter (4V/A):	82.250 Å
BJH Desorption average pore diameter (4V/A):	67.057 Å

Table S4. BET surface area of microwave ignited pre-selected morphology PdO_2