1	Supporting Information					
2	Structural Modulation, Argentophilic Interactions and Photoluminescence Properties of					
3	Silver(I) Coordination Polymers with Isomeric N-donor Ligands					
4	Kamal Kumar Bisht ^a , Amal Cherian Kathalikkattil ^{a,b} and Eringathodi Suresh ^a *					
5	^a Analytical Discipline and Centralized Instrument Facility, Central Salt and Marine Chemicals					
6	Research Institute, Council of Scientific and Industrial Research (CSIR) G.B.Marg, Bhavnagar -364					
7	002, Gujarat, India.					
8 9	^b Department of Chemical Engineering, Pusan National University, Jangjun-Dong, Gumjung-gu, Busan, 609-735, Republic of Korea.					
10	E-mail: esuresh@csmcri.org and sureshe123@rediffmail.com					
11						
12						
13						
	0					

Scheme S1. Chemical structures of linkers bis(pyridine-3-ylmethyl)terephthalate (L1) and bis(pyridine-2-ylmethyl)terephthalate (L2). Lowercase alphabets are given to indicate the respective protons in nmr spectra.

18

19

20 Scheme S2. Synthetic procedure to prepare bis(pyridine-3-ylmethyl)terephthalate (L1).

25 S4: FTIR spectra for compound bis(pyridine-2-ylmethyl)terephthalate (L2)

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2012

28 S5: FTIR spectra for coordination polymer 1

30

31 S6: FTIR spectra for coordination polymer 2

33 S7: ¹H NMR spectra for L1 in d3-acetonitrile

35 **S8:** ¹H NMR spectra for L2 in d3-acetonitrile

S9: ¹H NMR spectra for **1** in d3-acetonitrile

S10: ¹H NMR spectra for **2** in d3-acetonitrile

S11: Aromatic region of ¹H nmr spectra for complexes **1** and **2**. The ¹H nmr spectra of 44 respective ligands are also given as reflection to show the shifting in pyridyl proton positions

45 after complexation. a-e represents the pyridyl protons as shown in scheme **S1**.

S12: TGA profiles of coordination polymers 1 and 2

51 S13: Comparison of experimental and simulated XRPD profiles of complex 1

54 S14: Comparison of experimental and simulated XRPD profiles of complex 2

57 S15: Absorption spectra of compounds 1, 2, L1 and L2 in acetonitrile solutions ($\sim 1 \times 10^{-4}$ M)

58 at ambient temperature.

59

56

60

61 S16: Luminescence spectra of coordination polymers 1 and 2 in acetonitrile solutions ($\sim 1 \times 10^{-4}$ M) at ambient temperature. Absorption profiles are given as dotted plots for the sake of comparison.

66 S17: Absorption spectra of compounds 1, 2, L1 and L2 in solid state at ambient temperature

⁶⁷ recorded using crystalline powder samples prepared by gentle crushing of crystals.

68

69

70

S18: ORTEP diagram of 2 with atom numbering scheme (40% probability factor for the thermal ellipsoids).

75 Table S1: Crystal Data and Refinement Parameters for Compound L1, L2, Complex 1 & 2

Identification code	L1	L2	Complex 1	Complex 2
Chemical formula	$C_{20}H_{16}N_2O_4$	$C_{20}H_{16}N_2O_4$	$C_{44}H_{35}Ag_2F_6N_5O_{14}S_2$	$C_{21}H_{18}Ag_{1}F_{3}N_{2}O_{8}S_{1} \\$
Formula weight	348.35	348.35	1251.63	623.30
Crystal Colour	Colourless	Colourless	Colourless	Colourless
Crystal Size (mm)	0.61 x0.30 x0.15	0.33 x 0.23 x 0.05	0.28 x 0.14 x 0.08	0.40 x 0.33 x 0.04
Temperature (K)	100(2)	293(2)	110(2)	100(2)
Crystal System	Monoclinic	Monoclinic	Triclinic	Orthorhombic
Space Group	$P2_1/n$	$P2_1/c$	P-1	Pbcn
a(Å)	5.6023(9)	7.831(3)	11.2497(7)	5.9957(11)
b(Å)	16.038(2)	8.838(3)	14.6138(8)	23.128(4)
c (Å)	9.1681(14)	12.436(4)	15.2418(9)	16.303(3)
$\alpha(\circ)$	90	90	85.752(2)	90
β(°)	97.593(3)	93.886(7)	73.7830(10)	90
γ (°)	90	90	72.581 (3)	90
Ζ	2	2	2	4
$V(Å^3)$	816.5(2)	858.7(5)	2295.6(2)	2260.7(7)
Density (Mg/m ³)	1.417	1.347	1.811	1.831
Absorption Coefficient(mm ⁻¹)	0.100	0.095	1.043	1.061
F(000)	364	364	1252	1248
Reflections Collected	4862	5928	19515	12013
Independent Reflections	1906	1508	10313	2475
R _(int)	0.0335	0.0537	0.0181	0.0243
Number of parameters	150	150	654	178
S(Goodness of Fit) on F ²	1.247	1.119	1.032	1.093
Final R1/wR2 (I>2o(I)	0.0681/ 0.1606	0.0739 / 0.1442	0.0396/ 0.1077	0.0433/ 0.1057
Weighted R1/wR2(all data)	0.0820/0.1766	0.1239 / 0.1645	0.0418/ 0.1094	0.0516/ 0.1106
CCDC Number	868386	868387	868388	868389

Table S2. Hydrogen Bonding Table for Complex 1 and Complex 2

Complex 1								
D-HA	d(HA) (Å)	d(DA) (Å)	∠ D-HA (°)					
$C(1)-H(1)Ol(14)^{1}$	2.45	3.183(3)	136					
$C(3)-H(3)O(3)^2$	2.38	3.215(3)	149					
$C(5)-H(5)O(10)^{3}$	2.43	3.272(5)	150					
$C(6)-H(6A)O(3)^{2}$	2.57	3.234(3)	126					
$C(15)-H(15B)O(2)^{3}$	2.59	3.348(3)	135					
$C(20)-H(20)O(12)^{3}$	2.58	3.485(4)	164					
$C(21)-H(21)O(9)^{3}$	2.38	3.160(4)	141					
C(30)-H(30)O(11) ¹	2.60	3.199(5)	123					
$C(33)-H(33)O(12)^{1}$	2.35	3.237(3)	160					
C(38)-H(38)O(13) ⁴	2.54	3.378(4)	150					
$C(43)-H(43A)O(11)^5$	2.53	3.320(10)	139					
Symmetry code : 1. x,y,-1+z 2. 1+x,y,z 31+x,y,z 4. 2-x,-y,-z 5. x, y, z								
Complex 2								
D-HA	d(HA) (Å)	d(DA) (Å)	∠ D-HA (°)					
$O(8)-H(8C)Ol(10)^{1}$	2.07(6)	2.701(9))	151(7)					
C(6)-H(6A)O(8) ¹	2.51	3.413(8)	154					
$C(6)-H(6B)O(2)^2$	2.47	3.317(4)	146					
Symmetry code : 1. x,y,z 2.1-x, y, 3/2-z								

Table. S3: Selected Bond Lengths(Å) and Angles(°) for Complexes 1 and 2 $\,$

Complex 1							
Ag(1)-Ag(2)	3.3642(4)	F(4)-C(42)	1.339(3)				
Ag(1)-N(1)	2.169(2)	F(5)-C(42)	1.330(4)				
$Ag(1)-N(2)^{\#1}$	2.168(2)	F(6)-C(42)	1.341(4)				
Ag(2)-N(3)	2.186(2)	S(1)-O(9)	1.430(2)				
$Ag(2)-N(4)^{\#2}$	2.190(2)	S(1)-O(10)	1.423(3)				
Ag(2)-N(5)	2.716(3)	S(1)-O(11)	1.397(3)				
Ag(1)-O(14)	2.620 (4)	S(1)-C(41)	1.815(4)				
N(5)-C(44)	1.376(4)	S(2)-O(12)	1.438(2)				
F(1)-C(41)	1.346(5)	S(2)-O(13)	1.431(3)				
F(2)-C(41)	1.312(4)	S(2)-O(14)	1.445(2)				
F(3)-C(41)	1.282(5)	S(2)-C(42)	1.818(3)				
$N(2)^{\#1}-Ag(1)-N(1)$	161.93(9)	$N(4)^{#2}$ -Ag(2)-Ag(1)	80.86(6)				
$N(2)^{\#1}-Ag(1)-Ag(2)$	93.58(6)	N(3)-Ag(2)-N(5)	89.83(9)				
N(1)-Ag(1)-Ag(2)	104.43(6)	$N(4)^{#2}$ -Ag(2)-N(5)	94.04(9)				
$N(3)-Ag(2)-N(4)^{\#2}$	174.21(9)	Ag(1)-Ag(2)-N(5)	133.80(6)				
N(3)-Ag(2)-Ag(1)	93.35(6)						
Symmetry transformat	ions: ^{#1} x+1,y,z-1;	^{#2} x-1,y,z+1					
Complex 2							
Ag(1)-N(1) #1	2.149(3)	$S(1)-O(9)^{\#1}$	1.292(6)				
$C(11)-F(2)^{\#1}$	1.216(6)	$S(1)-O(10)^{\#1}$	1.546(12)				
$C(11)-F(1)^{\#1}$	1.575(9)	S(1)-C(11)	1.737(9)				
$N(1)^{\#1}$ -Ag(1)-N(1)	175.57(14)	O(1)-C(6)-C(5)	108.4(2)				
C(1)-N(1)-Ag(1)	117.0(2)	C(7)-O(1)-C(6)	116.4(2)				
C(5)-N(1)-Ag(1)	124.5(2)	O(1)-C(7)-C(8)	112.0(3)				
Symmetry transformations: ^{#1} x,y,-z+3/2							