Electronic Supplementary Information

A highly regioselective sp³ C–H amination of tertiary amides based on Fe(II) complex catalysts

Xuerong Mao, Yuanzhao Wu, Xiaoxiang Jiang, Xunhua Liu, Yixiang Cheng* and Chengjian Zhu*

Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China Yixiang Cheng (yxcheng@nju.edu.cn), Chengjian Zhu (cjzhu@nju.edu.cn)

Contents:

- ESI 1. Materials and Methods
- ESI 2. Optimization of the reaction condition
- ESI 3. The study of MS (ESI) on mechanism
- ESI 4. General procedure for amination of amide and SP³ C–H activation reaction
- ESI 5. Characterization data of compounds
- ESI 6. Copies of ¹ H NMR, ¹³C NMR and MS

ESI 1. Instrumentation and Materials

All reactions were carried out under Nitrogen atmosphere unless otherwise noted. All solvents and reagents were commercially available and used without further purification. Melting points were determined on a hot-plate microscope apparatus and were uncorrected. Analytical thin-layer chromatography (TLC) was performed on Merck silica gel aluminium plates with GF-254 indicator, visualized by irradiation with UV light. MS was determined on a Micromass GCT, NMR spectra were collected on a 300-Bruker spectrometer 300 MHz for ¹H NMR and 75 MHz for ¹³C NMR and reported as parts per million (ppm) from the internal standard TMS. Chemical shifts (δ) are reported in ppm downfield from tetramethylsilane. Abbreviations for signal couplings are: s, singlet; d, doublet; t, triplet; m, multiplet.

ESI 2. Optimization of the reaction condition ^a

Entry	Catalyst	Solvent	Ligand	Oxidant	Yield/ (%) ^b
5	(10mol %)		(20%)		
1	CuI	n-decane	_	TBHP	<10
2	CuSO ₄	n-decane	_	TBHP	trace
3	CuBr	n-decane	_	TBHP	trace
4	CuCl	n-decane	_	TBHP	0
5	CuBr ₂	n-decane	_	TBHP	trace
6	$CuCl_2$	n-decane	_	TBHP	0
7	FeCl ₂ .4H ₂ O	n-decane	_	TBHP	64
8	FeCl ₃	n-decane	_	TBHP	trace
9	FeSO ₄	n-decane	_	TBHP	27
10	$Fe_2(SO_4)_3$	n-decane	_	TBHP	trace
11	$Ni(OAc)_2$	n-decane	_	TBHP	0
12	$Pb(OAc)_2$	n-decane	_	TBHP	trace
13	FeCl ₂ .4H ₂ O	n-decane	_	O_2	trace
14	FeCl ₂ .4H ₂ O	n-decane	_	PIA ^b	trace
15	FeCl ₂ .4H ₂ O	n-decane	_	DTBP ^c	0
16	FeCl ₂ .4H ₂ O	n-decane	_	H_2O_2	trace
17	FeCl ₂ .4H ₂ O	n-decane	_	MnO_2	trace
18	FeCl ₂ .4H ₂ O	DMF	_	TBHP	24
19	FeCl ₂ .4H ₂ O	EtOAc	_	TBHP	61
20	FeCl ₂ .4H ₂ O	CH ₃ CN	_	TBHP	52
21	FeCl ₂ .4H ₂ O	Toluene	_	TBHP	trace
22 ^e	FeCl ₂ .4H ₂ O	n-decane	_	TBHP	49
23 ^r	FeCl ₂ .4H ₂ O	n-decane	_	TBHP	68
24 ^g	FeCl ₂ .4H ₂ O	n-decane	_	TBHP	72
25	FeCl ₂ .4H ₂ O	n-decane	L1	TBHP	79
26	FeCl ₂ .4H ₂ O	n-decane	L2	TBHP	65
27	FeCl ₂ .4H ₂ O	n-decane	L3	TBHP	73
28	FeCl ₂ .4H ₂ O	n-decane	L4	TBHP	52
29 ^{g, n}	FeCl ₂ .4H ₂ O	n-decane	L1	TBHP	84
30	_	n-decane	L1	TBHP	0
31	FeCl ₂	n-decane	L1	_	0
^a Reaction condition: benzamide 1a (0.1 mmol), 1-methylpyrrolidin-2-one, 2a (0.3					
mmol), oxidant (1.5 equiv), solvent (1.0 mL) under air; ^b the yield of 3a; ^c					
Iodobenzene diacetate; ^u di-tert-butylperoxide ; ^e 5 mol % FeCl ₂ is used. ¹ 15					
mol % FeCl ₂ ; ^g 20 mol % FeCl ₂ .4H ₂ O and 3.5 equiv of TBHP are added; ⁿ					
Under nitrogen atmosphere.					

ESI 3. The study of MS (ESI) on mechanism

When 3equiv. BHT (2, 6-ditert-buthyl-p-cresol) was added to the amination reaction system of benzamide **1a** with *N*-methylpyrrolidin-2-one **2a**, we found that yield **3a** dramatically decreased, Meanwhile, 5-(2, 6-di-tert-butyl-4-methylphenoxy)-1-methylpyrrolidin-2-one **4** was checked by LUMS. It indicates that a free radical reaction would be involved.

MS (ESI, positive) for enamine intermediate 4, found *m/z*: 318.15 (M+H), 340.15 (M+Na).

MS(ESI, positive) for product **3a**, found *m/z*: 219.15 (M+H), 241.10 (M+Na), 437.25 (2M+H), 459.15 (2M+Na).

ESI 4. General procedure for amination of amide and SP³ C-H activation reaction

A schlenk tube filled with nitrogen was placed in amide (0.10 mmol), tert-amide (0.30 mmol), FeCl₂.4H₂O (0.02 mmo l), 6, 6'-dimethyl-2, 2'-bipyridine (0.02 mmol), *n*-decane (1.0 mL) and

TBHP(3.5equiv.). The resulting mixture was stirred at 90 0 C until it completed. When the reaction finished, the reaction mixture was cooled to room temperature and poured into saturated Na₂S₂O₃ solution (3 mL), extracted with EtOAc (3×8 mL), then washed with saturated brine(3×8 mL). The combined organic layers were dried over anhydrous Na₂SO₄. After removing the solvent in vacuo, the residue was purified by flash column chromatography on silica gel or preparative TLC on GF 254 to afford the desired product 3a.

ESI 5. Characterization data of compounds

*N-(*1-methyl-5-oxopyrrolidin-2-yl)benzamide 6a

Yellow oil; Yield: 84%; ¹H NMR (300 MHz, δ_6 -DMSO): δ (ppm) = 8.89-8.87 (d, J = 8.7 Hz, 1 H), 7.89-7.87 (d, J = 6.0 Hz, 1 H), 7.58-7.16 (m, 3 H), 5.64 (m, 1 H), 2.65 (s, 3 H), 2.46-1.89 (m, 4 H); ¹³C NMR (75 MHz,

 $δ_6$ -DMSO): δ (ppm) = 173.9, 166.9, 134.2, 131.9, 128.7, 127.8, 65.6, 29.3, 27.0, 25.2; MS (ESI, negative) for C₁₂H₁₄N₂O₂, found *m/z*: 217.17 (M-H), 331 (M+CF₃COO).

4-methyl-N-(1-methyl-5-oxopyrrolidin-2-yl)benzamide 6b

4-methoxy-N-(1-methyl-5-oxopyrrolidin-2-yl)benzamide 6c

 $(MeO-4) C_6 H_4$ N_H $N_$

H), 7.02-6.99 (d, J = 9.0 Hz, 2 H), 5.64-5.58 (m, 1 H), 3.81 (s, 3 H), 2.66(s, 3 H), 2.49-1.82 (m, 4 H); ¹³C NMR (75 MHz, δ_6 -DMSO) δ (ppm) = 173.7, 166.3, 166.2, 129.7, 129.3, 114.0, 65.5, 55.7, 29.2, 26.8, 25.1; MS (ESI, negative) for C₁₂H₁₆N₂O₃, found *m/z*: 247.00 (M-H), 283 (M+³⁵Cl), 361 (M+CF₃COO).

N-(1-methyl-5-oxopyrrolidin-2-yl)-4-nitrobenzamide 6d

 $(NO_2-4)C_6H_4$ $(NO_$

3 H), 2.51-1.86 (m, 4 H); ¹³C NMR (75 MHz, δ_6 -DMSO): δ (ppm) = 173.9, 165.2, 149.6, 139.2, 129.3, 123.9, 65.9, 29.2, 27.1, 25.2; MS (ESI, negative) for C₁₂H₁₃N₃O₄, found m/z: 262.00 (M-H), 297.95 (M+³⁵Cl), 375.95 (M+CF₃COO).

4-chloro-N-(1-methyl-5-oxopyrrolidin-2-yl)benzamide 6e

 $\begin{array}{l} & (C1-4)C_6H_4 & \bigwedge_{H} & \bigwedge_{Me} & (Me) \\ & (C1-4)C_6H_4 & \bigwedge_{H} & \bigwedge_{Me} & (Me) \\ & (Me) & (Me) \\ & (M$

2-methyl-N-(1-methyl-5-oxopyrrolidin-2-yl)benzamide 6f

 $\langle Me-2 \rangle C_6 H_4 \bigvee_{H}^{O} \bigvee_{Me}^{N} O_{Me}$ white soil; yield: 74%; mp: (123-124); ¹H NMR (300 MHz, δ_6 -DMSO): δ (ppm) = 8.81-8.78 (d, J = 8.4 Hz, 1 H), 7.37-7.22 (m, 4 H), 5.60-5.53 (m, 1 H), 2.71 (s, 3 H), 2.50-1.84 (m, 7 H);

¹³C NMR (75 MHz, δ₆-DMSO): δ (ppm) = 173.8, 169.7, 136.8, 135.4, 130.8, 129.9, 127.4, 125.9, 65.1, 29.2, 27.1, 25.1, 19.7; MS (ESI, negative) for C₁₃H₁₆N₂O₂, found m/z: 231.05 (M-H), 267.00 (M+³⁵Cl), 345 (M+CF₃COO).

N-(1-methyl-5-oxopyrrolidin-2-yl)furan-2-carboxamide 6g

White solid; yield: 82%; mp: (208-209); ¹H NMR (300 MHz, δ_6 -DMSO): δ (ppm) = 8.88-8.85 (d, J = 8.7 Hz, 1 H), 7.884-7.881 (d, J = 1 Hz, 1 H), 7.19-7.18 (d, J = 3.6 Hz, 1 H), 6.66-6.65 (d, J = 3.9 Hz, 1 H), 5.64-5.59 (m,

1 H), 2.71 (s, 3 H), 2.35 (s, 3 H), 2.46-2.41 (m, 4 H); ¹³C NMR (75 MHz, δ_6 -DMSO): δ (ppm) = 166.7, 152.3, 149.0, 135.5, 130.0, 123.7, 83.7, 28.8, 27.8, 26.6; MS (ESI, negative) for

C₁₀H₁₂N₂O₃, found m/z: 207.00 (M-H).

N-(1-methyl-5-oxopyrrolidin-2-yl)benzenesulfonamide 6h

(ppm) = 173.4, 142.2, 132.9, 129.6, 126.6, 70.1, 29.3, 28.6, 26.7, 26.0. MS(ESI, negative) for C₁₁H₁₄N₂O₂S, found m/z: 253.00 (M-H), 366.95(M+CF₃COO).

4-methyl-N-(1-methyl-5-oxopyrrolidin-2-yl)benzenesulfonamide 6i

N-(1-ethyl-5-oxopyrrolidin-2-yl)benzamide 6j

Ph $\stackrel{N}{H}$ $\stackrel{N}{Et}$ $\stackrel{N}{Et$

4-chloro-N-(1-ethyl-5-oxopyrrolidin-2-yl)benzamide 6k

 $\begin{pmatrix} C_{I-4} \end{pmatrix} C_6 H_4 \overset{O}{H_4} \overset{N}{H_4} \overset{N}{H_5} \overset{N}{Et} \\ & \delta_6 \text{-DMSO} \end{pmatrix}; \ \delta \ (\text{ppm}) = 8.99 \text{-} 8.96 \ (\text{d}, J = 8.7 \ \text{Hz}, 1 \ \text{H}), \ 7.91 \text{-} 7.89 \\ & (\text{d}, J = 8.4 \ \text{Hz}, 2 \ \text{H}), \ 7.59 \text{-} 7.56 \ (\text{d}, J = 8.4 \ \text{Hz}, 2 \ \text{H}), \ 5.76 \text{-} 5.70 \ (\text{m}, 1 \ \text{H}), \ 3.45 \text{-} 1.02 \ (\text{m}, 9 \ \text{H}); \ ^{13}\text{C} \\ & \text{NMR} \ (75 \ \text{MHz}, \ \delta_6 \text{-DMSO}) \ 173.6, \ 163.7, \ 136.8, \ 132.8, \ 129.7.6, \ 128.8, \ 63.4, \ 34.53, \ 29.4, \ 25.4, \\ & 13.1; \ \text{MS} \ (\text{ESI, negative}) \ \text{for} \ C_{13}\text{H}_{15}\text{N}_2\text{O}_2\text{Cl, found m/z}; \ 265.00 \ (\text{M-H}). \\ \end{cases}$

N-(1-ethyl-5-oxopyrrolidin-2-yl)benzenesulfonamide 6l

white solid; yield 56%; mp: (155-156); ¹H NMR (300 MHz, δ6-DMSO): δ (ppm) = 8.50-8.47 (d, *J* = 9.0 Hz, 1 H), 7.85-7.83 (d, *J* = 9.0 Hz, 2 H), 7.83-7.59 (m, 3 H), 4.99-4.92 (m, 1 H), 3.37-0.92 (m, 9 H); ¹³C NMR (75

MHz, δ_6 -DMSO): δ (ppm) = 173.0, 142.5, 132.9, 129.7, 126.4, 67.9, 34.0, 28.8, 26.1, 12.8; MS (ESI, negative) for C₁₂H₁₆N₂O₂S, found m/z: 267.00 (M-H), 380.95 (M+CF₃COO).

N-(1-cyclohexyl-5-oxopyrrolidin-2-yl)benzamide 6m

yellow oil; yield 28%; ¹H NMR (300 MHz, $\delta 6$ -DMSO): δ (ppm) = 8.98-8.95 (d, J = 9.0 Hz, 1 H), 7.86-7.84 (d, J = 4.5 Hz, 2 H), 7.83-7.44 (m, 3 H), 5.81-5.75 (m, 1 H), 3.66-3.34 (m, 1 H), 2.36-1.00 (m, 14 H);

¹³C NMR (75 MHz, δ₆-DMSO): δ (ppm) = 174.3, 165.8, 147.5, 129.8, 128.8, 127.6, 65.7, 48.7, 30.4, 29.3, 29.2, 27.0, 25.2; MS (ESI, negative) for $C_{17}H_{22}N_2O_2$, found m/z: 286.17 (M-H), 321.05(M+³⁵Cl), 399.05(M+CF₃COO).

N-(1-benzyl-5-oxopyrrolidin-2-yl)benzamide 6n

Colorless oil; yield 37%; ¹H NMR (300 MHz, δ_6 -DMSO): δ (ppm) = Ph $\stackrel{N}{H}$ $\stackrel{N}{Bn}$ $\stackrel{N}{Bn}$ $\stackrel{N}{Bn}$ $\stackrel{N}{S}$ (d, J = 8.7 Hz, 1 H), 7.78-7.75 (d, J = 8.7 Hz, 2 H), 7.75-7.20 (m, 8 H), 5.65-5.63 (t, J = 4.8 Hz, 1 H), 4.60-4.55 (d, J = 15 Hz, 1 H), 4.08-4.03 (d, J = 15 Hz, 1 H), 2.50-1.99 (m, 4 H); ¹³C NMR (75 MHz, δ_6 -DMSO): δ (ppm) = 174.3, 166.9, 137.8, 134.2, 131.9, 128.7, 128.6, 127.9, 127.7, 127.3, 63.9, 43.5, 29.2, 25.5; MS (ESI, negative) for C₁₈H₁₈N₂O₂, found m/z: 293.05 (M-H), 329.05(M+³⁵Cl), 407.00 (M+CF₃COO).

N-(1-methyl-6-oxopiperidin-2-yl)benzamide 60

Ph $\stackrel{N}{H}_{Me}$ $\stackrel{N}{Me}_{Ne}$ cololess oil; yield 32%; ¹H NMR (300 MHz, δ_6 -DMSO): δ (ppm) = 8.92-8.89 (d, J = 8.1 Hz, 1 H), 7.91-7.88 (d, J = 7.5 Hz, 2 H), 7.55-7.45 (m, 3 H), 5.11-5.48 (m, 1 H), 2.70 (s, 3 H), 2.50-1.50 (m, 6 H); ¹³C NMR (75 MHz, δ_6 -DMSO): δ (ppm) = 173.9, 169.7, 131.6, 129.9, 128.7, 64.2, 32.3, 29.0, 22.1; MS (ESI, negative) for C₁₈H₁₈N₂O₂, found m/z: 231.05 (M-H).

ESI 6. Copies of ¹H NMR, ¹³C NMR and MS

Electronic Supplementary Material (ESI) for RSC Advances This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2012

-E:\lems-data'chengyixiang\20120331-mxr\20120331015.lcdLine#:1 R.Time:0.233(Scan#:15) MassPeaks:216 Spectrum Mode:Averaged 0.167-0.267(11-17) BasePeak:247.00(11686) BG Mode:Averaged 0.033-0.83(3-51) Segment 1 - Event 1

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2012

Mass Spectrum MassPeaks:209 Spectrum Mode:Averaged 0.167-0.267(11-17) BasePeak:231,05(40419) BG Mode:Averaged 0.067-0.800(5-49) Segment 1 - Event 1

Mass Spectrum MassPeaks:287 Spectrum Mode:Averaged 0.200-0.300(13-19) BasePeak:253.00(49676) BG Mode:Averaged 0.007-0.700(5-43) Segment 1 - Event I

-E:\lcms-data\chengyixiang\20120330\mxr201203306.lcdLine#:1 R.Time:0.200(Scan#:13) MassPeaks:254 Spectrum Mode:Averaged 0.133-0.233(9-15) BasePeak:285.10(28914) BG Mode:Averaged 0.033-0.800(3-49) Segment 1 - Event 1

