Supporting Information

Copper-Catalyzed One-Pot Synthesis of *N*-Substituted Benzo[*d*]isothiazol-3(2*H*)-ones via *C*-*S*/*N*-*S* Bond Formation

Rajesh Paul and Tharmalingam Punniyamurthy*

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India. <u>tpunni@iitg.ernet.in</u>

1	General Information	S1
2	Procedure for N-Substituted Benzo[d]isothiazol-3(2H)-one Synthesis	S2
3	Characterization Data of N-Substituted Benzo[d]isothiazol-3(2H)-ones	S2-S10
3	Crystal Structure of N-(4-methoxyphenyl)benzo[d]isothiazol-3(2 H)-one	S11
4	NMR (¹ H & ¹³ C) Spectra of <i>N</i> -Substituted Benzo[<i>d</i>]isothiazol-3(2 <i>H</i>)-ones	S12-S61

General Information. CuCl (98%) and sulfur powder (97%) were purchased from Rankem and used without further purification. Cu(OAc)₂·1H₂O (98%)_was purchased from Merck and used without further purification. 2-Iodobenzoic acid (98%), 2-bromobenzoic acid (97%) and anilines were purchased from Aldrich. Column chromatography was performed with Rankem silica gel (60-120 mesh). The substituted 2-halobenzamides were prepared according to the reported procedures.¹¹ NMR (¹H and ¹³C) spectra were recorded with a Varian 400 spectrometer. Melting points were determined with a Büchi B-545 apparatus and are uncorrected. Elemental analyses were recorded using PerkinElmer CHNS analyzer. X-Ray data were collected on a Bruker SMART APEX equipped with a CCD area detector using Mo K α radiation. The structure was solved by direct method using *SHELLX-97* (Göttingen, Germany).

General Procedure for Preparation of *N*-Substituted Benzo[*d*]isothiazol-3(2*H*)-ones. An oven dried round bottom flask (10 mL) was charged with *N*-substituted 2-halobenzamide (0.5 mmol), CuCl (10 mol %), sulfur powder (1.5 mmol) and K_2CO_3 or Cs_2CO_3 (1.5 mmol) in DMF (1 mL) under nitrogen atmosphere. The resultant mixture was stirred at 75-135 °C under nitrogen balloon for the appropriate time. The progress of the reaction was monitored by TLC using ethyl acetate and hexane as eluent. The reaction mixture was then cooled to room temperature and diluted with ethyl acetate (10 mL). The organic layer was separated and washed with water (3 x 5 mL) and brine (1 x 5 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified on silica gel column chromatography using hexane and ethyl acetate as eluent.

Characterization Data of 2-Substituted Benzo[d]isothiazol-3(2H)-ones

N-Benzylbenzo[*d*]isothiazol-3(2*H*)-one² (table 1, entry 1). Colorless solid; 88% yield; mp = 88-89 °C (lit. mp³ 89 °C); ¹H NMR (CDCl₃, 400 MHz) δ 7.99 (d, J = 7.6 Hz, 1H), 7.49 (t, J = 7.2 Hz, 1H), 7.41 (d, J = 8.4 Hz, 1H), 7.33-7.23 (m, 6H), 4.96 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 165.5, 140.5, 136.3, 131.9, 128.9, 128.5, 128.4, 126.9, 125.6, 124.5, 120.5, 47.6; FT-IR (KBr): 3078, 3022, 2962, 2923, `667, 1592, 1445, 1336, 1261, 1243, 1184, 1064, 1029 cm⁻¹. Elemental analysis calcd (%) for C₁₄H₁₁NOS: C, 69.68; H, 4.59; N, 5.80; S, 13.29, found: C, 69.64; H, 4.56; N, 5.83; S, 13.31.

N-Butylbenzo[*d*]isothiazol-3(2*H*)-one⁴ (table 2, entry 1). Yellow oil; 93% yield; ¹H NMR (CDCl₃, 400 MHz) δ 8.01 (d, *J* = 8.0 Hz, 1H), 7.58-7.50 (m, 2H), 7.36 (t, *J* = 7.2 Hz, 1H), 3.88 (t, *J* = 7.2 Hz, 2H), 1.75 (t, *J* = 7.2 Hz, 2H), 1.71-1.33 (m, 2H), 0.95 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 165.5, 140.3, 131.7, 126.8, 125.6, 125.2, 120.4, 43.8, 31.7, 19.9, 13.8. FT-IR (neat): 2962, 2857, 1682, 1490, 1449, 1261, 1091 cm⁻¹. Elemental analysis calcd

(%) for C₁₁H₁₃NOS: C, 63.74; H, 6.32; N, 6.76; S, 15.47, found: C, 63.71; H, 6.35; N, 6.73; S, 15.50.

N-Cyclohexylbenzo[*d*]isothiazol-3(2*H*)-one³ (table 2, entry 2). Colorless solid; 95% yield; mp = 86-87 °C (lit.³ mp 87-88 °C); ¹H NMR (CDCl₃, 400 MHz) δ 8.01 (d, *J* = 8.0 Hz, 1H), 7.54-7.50 (m, 1H), 7.36-7.31 (m, 2H), 4.59-4.53 (m, 1H), 2.01 (d, *J* = 10.4 Hz, 1H), 1.85 (d, *J* = 12.8 Hz, 2H), 1.71-1.67 (m, 1H), 1.55-1.38 (m, 5H), 1.21-1.12 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 164.9, 140.4, 131.5, 126.6, 125.6, 125.4, 120.5, 53.3, 33.06, 25.7, 25.4; FT-IR (KBr): 2929, 2854, 1651, 1448, 1332, 1305, 1262, 1240, 1210, 1191, 1149, 1062 cm⁻¹. Elemental analysis calcd (%) C₁₃H₁₅NOS: C, 66.92; H, 6.48; N, 6.00; S, 13.74, found: C, 66.95; H, 6.46; N, 6.03; S, 13.76.

N-Isopropylbenzo[*d*]isothiazol-3(2*H*)-one⁶ (table 2, entry 3). Yellow oil; 93% yield; ¹H NMR (CDCl₃, 400 MHz) δ 8.01 (d, *J* = 7.6 Hz, 1H), 7.57-7.54 (m, 1H), 7.36 (t, *J* = 6.4 Hz, 2H), 5.01-4.95 (m,1H), 1.40 (d, *J* = 6.4 Hz, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 164.9, 140.1, 131.5, 126.4, 125.5, 125.4, 120.5, 46.1, 22.2. FT-IR (neat): 2935, 2851, 1641, 1447,1332, 1239, 1192, 1034 cm⁻¹. Elemental analysis calcd (%) for C₁₀H₁₁NOS: C, 62.15; H, 5.74; N, 7.25; S, 16.59, found: C, 62.18; H, 5.76; N, 7.24; S, 16.57.

N-(1-Phenylethyl)benzo[*d*]isothiazol-3(2*H*)-one (table 2, entry 4). Yellow oil; 87%, yield; ¹H NMR (CDCl₃, 400 MHz) δ 7.83-7.81 (m, 1H), 7.40-7.25 (m, 7H), 7.14-7.05 (m, 1H), 5.33-5.26 (m, 1H), 1.63 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 165.1, 140.6, 131.7, 128.8, 128.6, 128.3, 127.4, 126.7, 125.5, 120.5, 52.3, 19.3. FT-IR (neat): 2935, 2851, 1640, 1440, 1331,

1229, 1192, 1092, 1034 cm⁻¹. Elemental analysis calcd (%) for C₁₅H₁₃NOS: C, 70.56; H, 5.13; N, 5.49; S, 12.56, found: C, 70.53; H, 5.15; N, 5.53; S, 12.52.

N-(3,4-Dimethoxyphenethyl)benzo[*d*]isothiazol-3(2*H*)-one (table 2, entry 5). Yellow solid; 83% yield; mp 105-107 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.95 (d, *J* = 7.6 Hz, 1H), 7.51-7.47 (m, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.31 (t, *J* = 7.2 Hz, 1H), 6.71-6.65 (m, 3H), 4.04 (t, *J* = 6.8 Hz, 2H), 3.75 (s, 3H), 3.70 (s, 3H), 2.94 (t, *J* = 6.8 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 165.4, 149.1, 147.9, 140.3, 131.8, 130.3, 126.7, 125.5, 124.6, 120.9, 120.2, 112.1, 111.4, 55.9, 55.8, 45.2, 35.2. FT-IR (KBr): 2935, 2067, 1639, 1518, 1446, 1337, 1263, 1230, 1185, 1143, 1026 cm⁻¹. Elemental analysis calcd (%) for C₁₇H₁₇NO₃S: C, 67.74; H, 5.43; N, 4.44; S, 10.17, found: C, C, 67.71; H, 5.45; N, 4.46; S, 10.15.

N-(2-(Octyloxy)ethyl)benzo[*d*]isothiazol-3(2*H*)-one (table 2, entry 6). Yellow oil; 90% yield ¹H NMR (CDCl₃, 400 MHz) δ 7.97 (d, *J* = 8.0 Hz, 1H), 7.52(t, *J* = 8.0 Hz, 1H), 7.34-7.30 (m, 1H), 7.03(t, *J* = 7.6 Hz, 1H), 4.03 (t, *J* = 5.2 Hz, 2H), 3.65 (t, *J* = 4.8 Hz, 2H), 3.43-3.39 (m, 2H), 1.57-1.49 (m, 2H), 1.28-1.19 (m, 10H), 0.83(t, *J* = 6.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 165.7, 140.0, 131.9, 126.7, 125.4, 124.3, 120.3, 71.6, 69.4, 44.2, 31.9, 29.8, 29.6, 26.4, 26.3, 22.8, 14.3. FT-IR (neat): 2935, 2851, 1641, 1467, 1331, 1192, 1034 cm⁻¹. Elemental analysis calcd (%) for C₁₇H₂₅NO₂S: C, 66.13; H, 7.79; N, 4.33; S, 9.91, found: C, 66.17; H, 7.76; N, 4.34; S, 9.87.

N,*N*'-(Ethane-1,2-diyl)dibenzo[*d*]isothiazol-3(2*H*)-one (table 2, entry 7). Colorless solid; 81% yield; mp 165-167 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.01 (d, *J* = 8.0 Hz, 2H), 7.58 (t, *J* = 7.2 Hz, 2H), 7.46 (d, *J* = 8.0 Hz, 2H), 7.38 (t, *J* = 7.2 Hz, 2H), 4.21 (s, 4H); ¹³C NMR (CDCl₃, 100 MHz) δ 165.8, 140.9, 132.2, 126.9, 126.8, 125.8, 120.6, 43.1. FT-IR (KBr): 2964, 2924, 2853,

1644, 1505, 1447, 1330, 1304, 1261, 1097, 1065, 1019 cm⁻¹. Elemental analysis calcd (%) for $C_{16}H_{12}N_2O_2S$: C, 58.52; H, 3.68; N, 8.53; S, 19.53, found: C, 58.55; H, 3.64; N, 8.50; S, 19.54.

N-Benzyl-5-methoxybenzo[*d*]isothiazol-3(2*H*)-one (table 2, entry 8). Colorless solid, 67% yield; m.p. 134-135 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 7.83-7.81(m, 1H), 7.33-7.31 (m, 5H), 7.24-7.21 (m, 1H), 5.01 (s, 2H), 3.8 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 140.5, 139.9, 136.0, 135.8, 129.1, 128.6, 126.6, 122.2, 55.7, 47.9. FT-IR (KBr): 2917, 2840, 1651, 1591, 1576, 1408, 1266 cm⁻¹. Elemental analysis calcd (%) for C₁₅H₁₃NO₂S: C, 66.40; H, 4.83; N, 5.16; 11.82, found C, 66.44; H, 4.78; N, 5.19, S, 11.83.

N-Benzyl-5-(octyloxy)benzo[*d*]isothiazol-3(2*H*)-one (table 2, entry 9). Yellow liquid; 72% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 7.83-7.81(m, 1H), 7.33-7.31 (m, 5H), 7.24-7.21 (m, 1H), 5.01 (s, 2H), 4.03 (t, *J* = 5.2 Hz, 2H), 1.57-1.49 (m, 3H), 1.28-1.19 (m, 10H), 0.83(t, *J* = 6.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 140.5, 139.9, 136.0, 135.8, 129.1, 128.6, 126.6, 122.2, 69.4, 55.7, 47.9, 31.9, 29.8, 29.6, 26.4, 26.3, 22.8, 14.3. FT-IR (KBr): 2917, 2840, 1651, 1591, 1576, 1408, 1376, 1299, 1266, 1021 cm⁻¹. Elemental analysis calcd (%) for C₂₂H₂₇NO₂S: C, 71.51; H, 7.36; N, 3.79; S, 8.68, found C, 71.54; H, 7.33; N, 3.81; S, 8.71.

N-Phenylbenzo[*d*]isothiazol-3(2*H*)-one⁶ (table 3, entry 1). Colorless solid; 90% yield; mp 140-142 °C (lit.⁷ mp 141.5-142.5 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.0 Hz, 1H), 7.72-7.65 (m, 2H), 7.59 (d, *J* = 8.0 Hz, 2H), 7.49-7.42 (m, 2H), 7.34 (t, *J* = 7.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 139.8, 136.0, 132.8, 132.7, 129.7, 127.5, 126.2, 125.8, 120.4. FT-IR (KBr): 2963, 2923, 2840, 1633, 1412, 1261, 1095, 1022 cm⁻¹. Elemental analysis calcd (%) for C₁₃H₉NOS: C, 68.70; H, 3.99; N, 6.16; S, 14.11, found C, 68.72; H, 3.97; N, 6.18; S, 14.14.

N-(2-Methoxyphenyl)benzo[*d*]isothiazol-3(2*H*)-one (table 3, entry 2). Colorless solid; 84% yield; mp 105-107 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.09 (d, J = 8.0 Hz, 1H), 7.61 (d, J = 6.8 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.42-7.37 (m, 3H), 7.03 (t, J = 8.0 Hz, 2H), 3.81 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 165.1, 156.9, 141.6, 132.1, 130.7, 130.3, 127.2, 125.4, 124.6, 123.9, 120.9, 112.5, 56.0; FT-IR (KBr): 2923, 2923, 2851, 1663, 1593, 1497, 1445, 1333, 1261, 1094, 1021 cm⁻¹. Elemental analysis calcd (%) for C₁₄H₁₁NO₂S: C, 65.35; H, 4.31; N, 5.44; S, 12.46, found: C, 65.38; H, 4.29; N, 5.47; S, 12.44.

N-(2-Methylphenyl)benzo[*d*]isothiazol-3(2*H*)-one (table 3, entry 3). Colorless solid; mp 122-124 °C (lit. mp² 122-123 °C); ¹H NMR (CDCl₃, 400 MHz) δ 8.07 (d, J = 8.0 Hz, 1H), 7.63 (t, J = 8.0 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.49 (s, 1H), 7.46-7.38 (m, 2H), 7.34 (t, J = 8.0 Hz, 1H), 7.11 (d, J = 7.6 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (CDCl₃, 100MHz) δ 164.4, 140.2, 139.6, 137.3, 132.5, 129.4, 128.2, 127.4, 125.9, 125.6, 125.1, 121.9, 120.3, 21.6. FT-IR (KBr): 2963, 2917, 1644, 1504, 1331, 1016 cm⁻¹. Elemental analysis calcd (%) for C₁₄H₁₁NOS: C, 69.68; H, 4.59; N, 5.80; S, 13.29, found: C, 69.64; H, 4.61; N, 5.78; S, 13.27.

N-(4-Chlorophenyl)benzo[*d*]isothiazol-3(2*H*)-one⁷ (table 3, entry 5). Colorless solid; 85% yield; m.p. 127-128 °C (lit.⁷ mp 128-129 °C); ¹H NMR (CDCl₃, 400MHz) δ; 8.08 (d, *J* = 8.0 Hz, 1H), 7.65-7.63 (m, 2H), 7.57 (d, *J* = 8.0 Hz, 2H), 7.43-7.39 (m, 3H); ¹³C NMR (CDCl₃, 400MHz) δ 163.1, 138.6, 134.8, 131.6, 128.5, 128.1, 126.2, 124.9, 124.6, 123.6, 119.1; FT-IR (KBr): 2962, 2926, 2851, 1661,1591, 1490, 1444, 1325, 1303, 1261, 1122, 1028 cm⁻¹. Elemental analysis calcd (%) for C₁₃H₈CINOS: C, 59.66; H, 3.08; N, 5.35; S, 12.25, found C, 59.64; H, 3.10; N, 5.33; S, 12.27.

N-(4-Methoxyphenyl)benzo[*d*]isothiazol-3(2*H*)-one⁷ (table 3, entry 6): Colorless solid; 89% yield; m.p. 146-147 °C (lit.⁷ mp 147-149 °C); ¹H NMR (CDCl₃, 400 MHz) δ 8.08 (d, *J* = 8.0 Hz, 1H), 7.62 (t, *J* =6.8 Hz, 1H), 7.55-7.51 (m, 3H), 7.41 (t, *J* = 7.6 Hz, 1H), 6.96 (d, *J* =6.8 Hz, 2H), 3.8 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 164.5, 158.9, 140.2, 132.3, 129.8, 127.3, 127.0, 125.9, 124.8, 120.2, 114.7, 55.7. FT-IR (KBr): 2923, 2854, 1663, 1591, 1490, 1445, 1331, 1267, 1095 cm⁻¹. Elemental analysis calcd (%) for C₁₄H₁₁NO₂S: C, 65.35; H, 4.31; N, 5.44; S, 12.40, found C, 65.36; H, 4.33; N, 5.46; S, 12.42.

N-**p**-Tolylbenzo[*d*]isothiazol-3(2*H*)-one⁷ (table 3, entry 7). Colorless solid; 93% yield; mp 135-136 °C (lit.⁷ mp 136-137 °C); ¹H NMR (CDCl₃, 400 MHz) δ 8.02 (d, *J* = 8.0 Hz, 1H), 7.56-7.54 (m, 1H), 7.47 (d, *J* = 6.4 Hz, 4H), 7.36 (t, *J* = 8.0 Hz, 1H), 7.18 (d, *J* = 7.6 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 164.4, 140.1, 137.4, 134.7, 132.4, 130.1, 127.3, 125.9, 124.9, 120.2, 21.3. FT-IR (KBr): 2923, 2917, 2851, 1644, 1504, 1446, 1331, 1261, 1096, 1019 cm⁻¹. Elemental analysis calcd (%) for C₁₄H₁₁NOS: C, 69.68; H, 4.59; N, 5.80; S, 13.29, found 69.65; H, 4.56; N, 5.77; S, 13.25.

N-(4-(Phenyldiazenyl)phenyl)benzo[*d*]isothiazol-3(2*H*)-one (table 3, entry 9). Orange solid; 63% yield; mp 147-149 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.10 (d, *J* = 8.0 Hz, 1H), 7.65-7.61 (m, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.45-7.36 (m, 8H), 7.22 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 164.4, 152.8, 150.6, 139.8, 132.8, 131.4, 129.3, 127.5, 127.3, 126.2, 124.3, 124.2, 124.1, 123.1, 120.4. FT-IR (KBr): 3066, 2961, 2924, 2854, 2852, 1653, 1594, 1526, 1497, 1446, 1327, 1261, 1101, 1018 cm⁻¹. Elemental analysis calcd (%) for C₁₉H₁₃N₃OS: C, 68.86; H, 3.95; N, 12.68; S, 9.68, found .C, 68.84; H, 3.96; N, 12.64 S, 9.71.

N-(2,4-Dimethylphenyl)benzo[*d*]isothiazol-3(2*H*)-one (table 3, entry 10). Colorless solid; 92% yield; mp 114-115 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.00 (d, *J* = 8.0 Hz, 1H), 7.55 (t, *J* = 7.2 Hz, 1H), 7.47 (d, *J* = 8.4 Hz, 1H), 7.30 (t, *J* = 8.4 Hz, 1H), 7.12 (d, *J* = 7.6 Hz, 1H), 7.04 (s,1H), 6.98 (d, *J* = 8.0 Hz, 1H), 2.26 (s, 3H), 2.15 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 164.7, 141.3, 139.7, 137.4, 132.2, 132.0, 131.3, 128.8, 127.7, 127.2, 125.7, 124.1, 120.4, 21.3, 17.9. FT-IR (KBr): 2923, 2854, 1659, 1593, 1500, 1446, 1329, 1309, 1262, 1104, 1017 cm⁻¹. Elemental analysis calcd (%) for C₁₅H₁₃NOS: C, 73.56; H, 5.13; N, 5.49; S, 12.56, found C, 73.54; H, 5.16; N, 5.47; S, 12.54.

N-(3,4-Dimethylphenyl)benzo[*d*]isothiazol-3(2*H*)-one (table 3, entry 11). Colorless solid; 91% yield; mp 114-116 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.07 (d, *J* = 8.0 Hz, 1H), 7.61 (t, *J* = 7.6 Hz, 1H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.43-7.34 (m, 3H), 7.19 (d, *J* = 8.0 Hz, 1H), 2.28 (s, 3H), 2.26 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 164.3, 140.2, 137.9, 136.2, 134.8, 132.3, 130.5, 127.2, 126.2, 125.8, 124.9,122.5, 120.2, 20.0, 19.5. FT-IR (KBr): 2920, 2849, 2920, 1637, 1467, 1350, 1307, 1261, 1101, 1021 cm⁻¹. Elemental analysis calcd (%) for C₁₅H₁₃NOS: C, 70.56; H, 5.13; N, 5.49; S, 12.56, found C, 70.59; H, 5.11; N, 5.51; S, 12.54.

N-(2,6-Dimethylphenyl)benzo[*d*]isothiazol-3(2*H*)-one (table 3, entry 12). Colorless solid; 86% yield; mp 116-117 °C; ¹H NMR (CDCl₃, 400 MHz) 8.04 (d, J = 8.4 Hz, 1H), 7.57 (d, J = 7.2 Hz, 1H), 7.51(d, J = 7.6 Hz, 1H), 7.36-7.34 (m, 1H), 7.12-7.07 (m, 3H), 2.26 (s, 3H), 2.12 (s, 3H); ¹³C NMR (CDCl₃, 400MHz) δ 164.7, 141.4, 136.9, 134.6, 134.5, 132.3, 131.2, 130.5, 129.6, 127.3, 125.8, 124.1, 120.4, 20.9, 17.6. FT-IR(KBr): 2920, 2849, 2920, 1637, 1470, 1307, 1265, 1111, 1021 cm⁻¹. Elemental analysis calcd (%) for C₁₅H₁₃NOS: C, 70.56; H, 5.13; N, 5.49; S, 12.56, found C, 70.58; H, 5.15; N, 5.52; S, 12.54.

N-Benzyl-5-nitrobenzo[*d*]isothiazol-3(2*H*)-one (table 4, entry 2). Yellow solid; 35% yield; mp 178-180 °C; ¹H NMR 8.33-8.31 (m, 1H), 7.36-7.35 (m, 1H), 6.93-6.90 (m, 1H), 6.46-6.34 (m, 5H), 5.02 (s, 2H); ¹³C NMR (100 MHz, DMSO-d₆) 165.1, 146.7, 139.3, 138.3, 137.8, 132.0, 129.1, 128.0, 127.7, 126.1, 124.3, 55.6. FT-IR (KBr): 3399, 2962, 2977, 2857, 1651, 1591, 1513, 1408, 1340, 1299, 1261, 1094, 1021 cm⁻¹. Elemental analysis calcd (%) for $C_{14}H_{10}N_2O_3S$: C, 58.73; H, 3.52; N, 9.78; S, 11.20, found C, 58.76; H, 3.50; N, 9.75; S, 11.23.

N-Benzyl-5-bromobenzo[*d*]isothiazol-3(2*H*)-one (table 4, entry 3). Colorless solid; 90% yield; m.p. 139-140 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.177-8.172 (m, 1H), 7.67 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.36-7.30 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 138.8, 133.5, 131.7, 131.4, 131.3, 130.6, 129.9, 128.3, 126.9, 125.9, 42.5. FT-IR (KBr): 2930, 1627, 1331, 1356, 1252, 1075, 1041 cm⁻¹. Elemental analysis calcd (%) for C₁₄H₁₀BrNOS: C, 52.51; H, 3.15; N, 4.37; S, 10.01, found C, 52.48; H, 3.16; N, 4.35; S, 10.08.

5-Nitro-*N*-**p**-tolylbenzo[*d*]isothiazol-3(2*H*)-one (table 4, entry 6). Yellow solid; 35% yield; m.p. 111-112 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.77-8.71 (m, 1H), 8.43-8.39 (m, 1H), 7.67(d, J = 8.4 Hz, 2H), 7.60 (d, J = 8.4 Hz, 1H), 7.18 (d, J = 8.4 Hz, 2H); 2.28 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 163.7, 148.4, 137.0, 134.7, 133.8, 130.8, 129.9, 129.8, 126.7, 123.0, 121.3, 21.2. FT-IR(KBr): 2930, 2923, 2256, 1651, 1048, 1025 cm⁻¹. Elemental analysis calcd (%) for C₁₄H₁₀NO₃S: C, 58.73; H, 3.52; N, 9.78; S, 11.20, found C, 58.76; H, 3.55; N, 9.75; S, 11.18.

N-(4-Methoxyphenyl)-5-nitrobenzo[*d*]isothiazol-3(2*H*)-one (table 5, entry 4). Yellow solid; 45% yield; 114-115 °C (DMSO); ¹H NMR (CDCl₃, 400 MHz) δ 8.68-8.67 (m, 1H), 7.61 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 8.4 Hz, 1H), 7.00 (d, *J* = 8.4 Hz, 3H), 3.73 (s, 3H); ¹³C NMR (CDCl₃, 100MHz) δ 162.4, 156.0, 146.2, 137.9, 137.2, 131.6, 131.4, 125.6, 123.9, 121.5, 114.0, 55.3. FT-IR(KBr): 2255, 2128, 1651, 1510, 1246, 1048, 1025, 1002 cm⁻¹. Elemental analysis calcd (%) for C₁₄H₁₀NO₄S: C, 55.62; H, 3.33; N, 9.27, S, 10.61, found C, 55.66; H, 3.31; N, 9.30, S, 10.63.

References

- B. S. Furniss, A. J. Hannaford, P. W. G. Smith and A. R. Tatchell, in *Vogels' Textbook of Practical Organic Chemistry*, Pearson Education Pte. Ltd, 2004, 1261.
- 2. J. C. Grivas, J. Org. Chem. 1975, 40, 2029.
- 3. Y. Uchida and K. Seizi, Bull. Chem. Soc. Jpn., 1982, 55, 1133.
- 4. M. Pietka-Ottik, P. Potaczek, E. Piasecki and J. Mlochowski, *Molecules*, 2010, 15, 8214.
- 5. G. Brahemi, F. R. Kona, A. Fiasella, D. Buac, J. Soukapova, A. Brancale, A. M. Burger and A. D. Westwell, *J. Med. Chem.*, 2010, **53**, 7.
- 6. S. Sivaramakrishnan. K. Keethi and K. R. Gates, J. Am. Chem. Soc., 2005, 127, 10830.
- H. Nakanishi, M. Kobayashi, S. Hasimoto and N. Kamigata, *Bull. Chem. Soc. Jpn.*, 1985, 58, 3131.
- D. M. Griffith, A. Haughey, S. Chahal, H. Muller-Bunz and C. J. Marmion, *Inorg. Chim.* Acta., 2010, 363, 2333.
- 9. P. Stoss and G. Sutzinyer, Chem. Ber., 1975, 108, 3855.

Crystal Structure of N-(4-methoxyphenyl)benzo[d]isothiazol-3(2H)-one

Crystal number: Summary of Data CCDC 876574 Thermal ellipsoids are drawn at a 40% probability level. Hydrogen atoms have been omitted for clarity.

Formula: C₁₄ H₁₁ N O₂ S

Unit cell parameters: a 10.5093(14) b 13.6166(17) c 9.1287(12) beta 114.028(6) space group P 21/c

Datablock:

Bond precision:	C-C = 0.0022	2 A	Wavelength=0.71073	
Cell:	a=12.7577(7)	b=10.0993(6)	c=11.6512(7)	
	alpha=90	beta=114.028(6) gamma=90	
Temperature:	296 K			
	Calculated		Reported	
Volume	1193.1(3)		1193.1(3)	
Space group	P 21/c		P2(1)/c	
Hall group	-P 2ybc		?	
Moiety formula	C14 H11 N C	02 S	?	
Sum formula	C14 H11 N C	02 S	C14 H11 N O2 S	
Mr	257.31		257.31	
Dx,g cm-3	1.433		1.432	
Z	4		4	
Mu (mm-1)	0.263		0.263	
F000	536.0		536.0	
F000'	536.72			
h,k,lmax	14,19,12		14,19,11	
Nref	3452		3382	
Tmin,Tmax	0.895,0.912		0.895,0.912	
Tmin'	0.895			
Correction method	MULTI-SCA	N		
Data completeness= 0.9 R(reflections)= $0.0388($ S = 1.023	80 3340)	Theta(max)= 29 wR2(reflections Npar= 165	9.940 s)= 0.0947(3109)	

SH-20

