Supplementary Information

Reversible Encapsulation of a Nitrate Guest via Hydrogen bonded Self-Assembled Capsule Formation by Flexible Tripodal Receptor in Polar Solvent through Dynamic Self-Assembly

Ashutosh S. Singh and Shih-Sheng Sun*

Institute of Chemistry, Academia Sinica, 115 Nankang, Taipei, Taiwan, Republic of China E-mail: sssun@chem.sinica.edu.tw

Fig. S1-S47	Spectral characterization of receptors and anion complexes.
Fig. S48-S56	HRESI mass spectra of nitrate complexes 1a-7a, 1b and 6b.
Fig. S57-S60	HRESI mass spectra of self-assemble capsule (1'2) formation.
Fig. S61-S64	HRESI mass spectra of self-assemble capsule (5_2) formation.
Fig. S65-S67	HRESI mass spectra of self-assemble capsule (6'2) formation.
Fig. S68	Titration spectra of mixture of nitrate complex 1a and 1b in
	DMSO- d_6 with varying amount of CDCl ₃ .
Fig. S69-S71	¹ H NMR titration of DMSO- d_6 solution of receptor 1' with
	$CDCl_3$, acetone- d_6 and CD_3NO_2 respectively.
Fig. S72-S74	¹ H NMR titration of DMSO- d_6 solution of nitrate complex 1b
	with CDCl ₃ , acetone- d_6 and CD ₃ NO ₂ respectively.
Fig. S75-S76	¹ H NMR titration of DMSO- d_6 solution of receptor 5 with
	acetone- d_6 and CD ₃ NO ₂ respectively.
Fig. S77-S79	¹ H NMR titration of DMSO- d_6 solution of nitrate complex 5a
	with $CDCl_3$, acetone- d_6 and CD_3NO_2 respectively.
Fig. S80	Titration spectra of mixture of nitrate complex 6a and 6b in
	DMSO- d_6 with varying amount of CDCl ₃ .
Fig. S81	¹ H NMR titration of DMSO- d_6 solution of receptor 6' with
	CD ₃ NO ₂ .
Fig. S82-S84	¹ H NMR titration of DMSO- d_6 solution of nitrate complex 6b
	with $CDCl_3$, acetone- d_6 and CD_3NO_2 respectively.
Fig. S85	Concentration dependent ¹ H NMR spectra of receptor 5 in
	CDCl ₃ .
Fig. S86-S93	Titration spectra of perchlorate complexes of the corresponding
	receptors 1-7 and 1' with TBANO ₃ in acetone- d_6 .
Fig. S94	Spectroscopic curves of titration of perchlorate complexes with
	TBANO ₃ in acetone- d_6 .

Fig. S95	pH dependent reversible binding of nitrate anion by receptor 1'.
Table S1	Crystallographic data and structure refinements for 1a.
Table S2	Hydrogen bonding distances and Bond angles in complex 6a .

Fig. S1⁻¹H NMR (400 MHz, DMSO- d_6 , 20 °C) spectrum of receptor 1.

Fig. S2 13 C NMR (100 MHz, DMSO- d_6 , 20 °C) spectrum of receptor 1.

Fig. S3 ¹H NMR (400 MHz, DMSO- d_6 , 20 °C) spectrum of a mixture of complexes **1a** (peaks represented by red circles) and **1b** (peaks represented by green circles) obtained by treating receptor **1** with nitric acid in CHCl₃/MeOH (v/v = 1/1). The circle in blue color represents water peak from DMSO- d_6 .

Fig. S4 ¹H NMR (400 MHz, DMSO- d_6 , 20 °C) spectrum of nitrate complex 1a.

Fig. S5 13 C NMR (100 MHz, DMSO- d_6 , 20 °C) spectrum of nitrate complex 1a.

Fig. S6 ¹H NMR (400 MHz, DMSO- d_6 , 20 °C) spectrum of nitrate complex 1b.

Fig. S8 The COSY spectrum of nitrate complex 1b in DMSO-d₆.

Fig. S9 The HSQC spectrum of nitrate complex 1b in DMSO-*d*₆.

Fig. S10 The HMBC spectrum of nitrate complex 1b in DMSO-*d*₆.

Fig. S11 The ROESY spectrum of nitrate complex 1b in DMSO-*d*₆.

Fig. S12 ¹H NMR (400 MHz, DMSO- d_6 , 20 °C) spectrum of receptor 1'.

Fig. S13 13 C NMR (100 MHz, DMSO- d_6 , 20 °C) spectrum of receptor 1'.

Fig. S14 ¹H NMR (400 MHz, CDCl₃, 20 °C) spectrum of receptor 1'.

Fig. S15 ¹³C NMR (100 MHz, CDCl₃, 20 °C) spectrum of receptor 1'.

Fig. S16 ¹H NMR (400 MHz, DMSO- d_6 , 20 °C) spectrum of receptor **2**.

Fig. S17 ¹³C NMR (100 MHz, DMSO- d_6 , 20 °C) spectrum of receptor 2.

Fig. S18 ¹H NMR (400 MHz, DMSO- d_6 , 20 °C) spectrum of nitrate complex 2a.

Fig. S19 ¹³C NMR (100 MHz, DMSO- d_6 , 20 °C) spectrum of nitrate complex 2a.

Fig. S20 ¹H NMR (400 MHz, DMSO- d_6 , 20 °C) spectrum of receptor 3.

Fig. S21 ¹³C NMR (100 MHz, DMSO- d_6 , 20 °C) spectrum of receptor 3.

Fig. S22 ¹H NMR (400 MHz, DMSO- d_6 , 20 °C) spectrum of nitrate complex 3a.

Fig. S23 ¹³C NMR (100 MHz, DMSO- d_6 , 20 °C) spectrum of nitrate complex 3a.

Fig. S24 ¹H NMR (400 MHz, DMSO- d_6 , 20 °C) spectrum of receptor 4.

Fig. S25 13 C NMR (100 MHz, DMSO- d_6 , 20 °C) spectrum of receptor 4.

Fig. S26 ¹H NMR (400 MHz, DMSO- d_6 , 20 °C) spectrum of nitrate complex 4a.

Fig. S27 ¹³C NMR (100 MHz, DMSO- d_6 , 20 °C) spectrum of nitrate complex 4a.

Fig. S28 ¹H NMR (400 MHz, DMSO- d_6 , 20 °C) spectrum of receptor 5.

Fig. S29 13 C NMR (100 MHz, DMSO- d_6 , 20 °C) spectrum of receptor 5.

Fig. S30 ¹H NMR (400 MHz, CDCl₃, 20 °C) spectrum of receptor 5.

Fig. S31 ^{13}C NMR (100 MHz, CDCl₃, 20 °C) spectrum of receptor 5.

Fig. S32 ¹H NMR (400 MHz, DMSO- d_6 , 20 °C) spectrum of nitrate complex 5a.

Fig. S33 ¹³C NMR (100 MHz, DMSO- d_6 , 20 °C) spectrum of nitrate complex 5a.

Fig. S34 ¹H NMR (400 MHz, DMSO- d_6 , 20 °C) spectrum of receptor 6.

Fig. S35 13 C NMR (100 MHz, DMSO- d_6 , 20 °C) spectrum of receptor 6.

Fig. S36 ¹H NMR (400 MHz, DMSO- d_6 , 20 °C) spectrum of nitrate complex 6a.

Fig. S37 ¹³C NMR (100 MHz, DMSO- d_6 , 20 °C) spectrum of nitrate complex 6a.

Fig. S38 ¹H NMR (400 MHz, DMSO- d_6 , 20 °C) spectrum of receptor 6'.

Fig. S39 ¹³C NMR (100 MHz, DMSO- d_6 , 20 °C) spectrum of receptor 6'.

Fig. S40 ¹H NMR (400 MHz, CDCl₃, 20 °C) spectrum of receptor 6'.

Fig. S41 ¹³C NMR (100 MHz, CDCl₃, 20 °C) spectrum of receptor 6'.

Fig. S42 ¹H NMR (400 MHz, DMSO- d_6 , 20 °C) spectrum of nitrate complex 6b.

Fig. S43 ¹³C NMR (100 MHz, DMSO- d_6 , 20 °C) spectrum of nitrate complex 6b.

Fig. S44 ¹H NMR (400 MHz, DMSO- d_6 , 20 °C) spectrum of receptor 7.

Fig. S45 ¹³C NMR (100 MHz, DMSO- d_6 , 20 °C) spectrum of receptor 7.

Fig. S46 ¹H NMR (400 MHz, DMSO- d_6 , 20 °C) spectrum of nitrate complex 7a.

Fig. S47 ¹³C NMR (100 MHz, DMSO- d_6 , 20 °C) spectrum of nitrate complex 7a.

Fig. S48 HRESI mass spectrum of complex 1a.

Fig. S49 HRESI mass spectrum of complex 1b.

Fig. S50 HRESI mass spectrum of complex 2a.

Fig. S51 HRESI mass spectrum of complex 3a.

Fig. S52 HRESI mass spectrum of complex 4a.

Fig. S53 HRESI mass spectrum of complex 5a.

Fig. S54 HRESI mass spectrum of complex 6a.

Fig. S55 HRESI mass spectrum of complex 6b.

Fig. S56 HRESI mass spectrum of complex 7a.

Fig. S57 HRESI mass spectrum of the self-assembled capsule (1'₂) recorded after dissolving nitrate complex **1b** in a mixture solution of DMSO/CHCl₃ (1:1).

Fig. S58 HRESI mass spectrum of the self-assembled capsule $(1'_2)$ recorded after dissolving receptor 1' in a mixture solution of DMSO/CHCl₃ (1:1).

Fig. S59 HRESI mass spectrum of the self-assembled capsule $(1'_2)$ recorded by dissolving receptor 1' to a mixture solution of DMSO/acetone (1:1, v/v).

Fig. S60 HRESI mass spectrum of the self-assembled capsule $(1'_2)$ recorded by dissolving receptor 1' to a mixture solution of DMSO/CH₃NO₂ (1:1, v/v).

Fig. S61 HRESI mass spectrum of the self-assembled capsule (5_2) recorded after dissolving nitrate complex 5a in mixture solution of DMSO/CHCl₃ (1:1).

Fig. S62 HRESI mass spectrum of the self-assembled capsule (5₂) recorded by dissolving receptor 5 to a mixture solution of DMSO/CHCl₃ (1:1, ν/ν).

Fig. S63 HRESI mass spectrum of the self-assembled capsule (5'₂) recorded by dissolving receptor 5 to a mixture solution of DMSO/acetone- d_6 (1:1, v/v).

Fig. S64 HRESI mass spectra of the self-assembled capsule (5₂) recorded by dissolving receptor 5 to a mixture solution of DMSO/CH₃NO₂ (1:1, ν/ν).

Fig. S65 HRESI mass spectrum of the self-assembled capsule (6'₂) recorded after dissolving the nitrate complex **6b** in a mixture solution of DMSO/CHCl₃ (1:1).

Fig. S66 HRESI mass spectra of the self-assembled capsule ($6'_2$) recorded by dissolving receptor **6'** to a mixture solution of DMSO/acetone (1:1, v/v).

Fig. S68 ¹H NMR titration spectra of a mixture of nitrate complexes (in DMSO- d_6 with varying amount of CDCl₃) obtained after addition of nitric acid in aqueous methanol to a suspension of receptor **1** in CHCl₃. The star marks in green and red color represent the peaks for DMSO- d_6 (as solvent) and DMSO- d_6 (as internal reference, TMS in DMSO- d_6), respectively. The circles in green and red color represent water peaks from DMSO- d_6 (as solvent) and from DMSO- d_6 (as internal reference, TMS in DMSO- d_6), respectively. The triangles in red and blue color represent amide N-H peaks of nitrate complexes **1b** and **1a**, respectively. The circle in blue color represents peak for CDCl₃.

Fig. S69 ¹H NMR (400 MHz, 20 °C) titration spectra of receptor **1'** (10.3 mM) in DMSO- d_6 with varying amount of CDCl₃ with TMS (in DMSO- d_6) as the internal reference. Green stars represent the peaks of DMSO- d_6 used as solvent. Red stars represent the peaks of DMSO- d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO- d_6 and from internal reference, respectively. A star mark in blue color represents peak for CDCl₃. The spectrum in red color was recorded after partial evaporation of CDCl₃ from the mixture solution, showing reversible capsule formation through dynamic self-assembly of receptor **1'**.

Fig. S70 ¹H NMR (400 MHz, 20 °C) titration spectra of receptor **1'** (10.3 mM) in DMSO- d_6 with varying amount of acetone- d_6 with TMS (in DMSO- d_6) as the internal reference. Green stars represent the peaks of DMSO- d_6 used as solvent. Red stars represent the peaks of DMSO- d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO- d_6 and from internal reference, respectively. Star marks in blue color represent the peaks for acetone- d_6 . The spectrum in red color was recorded after partial evaporation of acetone- d_6 from the mixture solution, showing reversible capsule formation through dynamic self-assembly of receptor **1'**.

Fig. S71 ¹H NMR (400 MHz, 20 °C) titration spectra of receptor **1'** (10.3 mM) in DMSO- d_6 with varying amount of CD₃NO₂ with TMS (in DMSO- d_6) as the internal reference. Green stars represent the peaks of DMSO- d_6 used as solvent. Red stars represent the peaks of DMSO- d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO- d_6 and from internal reference, respectively. A star mark in blue color represents peak for CD₃NO₂.

Fig. S72 ¹H NMR (400 MHz, 20 °C) titration spectra of nitrate complex **1b** (10.3 mM) in DMSO- d_6 with varying amount of CDCl₃ with TMS (in DMSO- d_6) as the internal reference. Green stars represent the peaks of DMSO- d_6 used as solvent. Red stars represent the peaks of DMSO- d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO- d_6 and from internal reference, respectively. A star mark in blue color represents peak for CDCl₃. The spectrum in red color was recorded after partial evaporation of CDCl₃ from the mixture solution, showing reversible binding of nitrate anion by receptor **1**'.

Fig. S73 ¹H NMR (400 MHz, 20 °C) titration spectra of nitrate complex **1b** (10.3 mM) in DMSO- d_6 with varying amount of acetone- d_6 with TMS (in DMSO- d_6) as the internal reference. Green stars represent the peaks of DMSO- d_6 used as solvent. Red stars represent the peaks of DMSO- d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO- d_6 and from internal reference, respectively. A star mark in blue color represents the peak for acetone- d_6 . The spectrum in red color was recorded after partial evaporation of acetone- d_6 from the mixture solution, showing reversible binding of nitrate anion by receptor **1**'.

Fig. S74 ¹H NMR (400 MHz, 20 °C) titration spectra of nitrate complex **1b** (10.3 mM) in DMSO- d_6 with varying amount of CD₃NO₂ with TMS (in DMSO- d_6) as the internal reference. Green stars represent the peaks of DMSO- d_6 used as solvent. Red stars represent the peaks of DMSO- d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO- d_6 and from internal reference, respectively. A star mark in blue color represents the peak for CD₃NO₂.

Fig. S75 ¹H NMR (400 MHz, 20 °C) titration spectra of receptor **5** (10.3 mM) in DMSO- d_6 with varying amount of acetone- d_6 with TMS (in DMSO- d_6) as the internal reference. Green stars represent the peaks of DMSO- d_6 used as solvent. Red stars represent the peaks of DMSO- d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO- d_6 and from internal reference, respectively. A star mark in blue color represents the peak for acetone- d_6 .

Fig. S76 ¹H NMR (400 MHz, 20 °C) titration spectra of receptor **5** (10.3 mM) in DMSO- d_6 with varying amount of CD₃NO₂ with TMS (in DMSO- d_6) as the internal reference. Green stars represent the peaks of DMSO- d_6 used as solvent. Red stars represent the peaks of DMSO- d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO- d_6 and from internal reference, respectively. A star mark in blue color represents the peak for CD₃NO₂.

Fig. S77 ¹H NMR (400 MHz, 20 °C) titration spectra of nitrate complex **5a** (10.3 mM) in DMSO- d_6 with varying amount of CDCl₃ with TMS (in DMSO- d_6) as the internal reference. Green stars represent the peaks of DMSO- d_6 used as solvent. Red stars represent the peaks of DMSO- d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO- d_6 and from internal reference, respectively. A star mark in blue color represents the peak for CDCl₃. The spectrum in red color was recorded after partial evaporation of CDCl₃ from the mixture solution, showing reversible binding of nitrate anion by receptor **5**.

Fig. S78 ¹H NMR (400 MHz, 20 °C) titration spectra of nitrate complex **5a** (10.3 mM) in DMSO- d_6 with varying amount of acetone- d_6 with TMS (in DMSO- d_6) as the internal reference. Green stars represent the peaks of DMSO- d_6 used as solvent. Red stars represent the peaks of DMSO- d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO- d_6 and from internal reference, respectively. A star mark in blue color represents the peak for acetone- d_6 . The spectrum in red color was recorded after partial evaporation of acetone- d_6 from the mixture solution, showing reversible binding of nitrate anion by receptor **5**.

Fig. S79 ¹H NMR (400 MHz, 20 °C) titration spectra of nitrate complex **5a** (10.3 mM) in DMSO- d_6 with varying amount of CD₃NO₂ with TMS (in DMSO- d_6) as the internal reference. Green stars represent the peaks of DMSO- d_6 used as solvent. Red stars represent the peaks of DMSO- d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO- d_6 and from internal reference, respectively. A star mark in blue color represents peak for CD₃NO₂.

Fig. S80 ¹H NMR titration spectra of mixture of nitrate complex (in DMSO- d_6 with varying amount of CDCl₃), obtained after addition of nitric acid in an aqueous methanol to the suspension of receptor **6** in CHCl₃. The star marks in green and red color represents peak corresponding to DMSO- d_6 (as solvent) and DMSO- d_6 (as internal reference, TMS in DMSO- d_6), respectively. Circle in green color represents water peak from DMSO- d_6 (as solvent) and the same in red color represents water peak from DMSO- d_6 (as internal reference, TMS in DMSO- d_6). A star mark in blue color represents peak for CDCl₃.

Fig. S81 ¹H NMR (400 MHz, 20 °C) titration spectra of receptor **6'** (10.3 mM) in DMSO- d_6 with varying amount of CD₃NO₂ with TMS (in DMSO- d_6) as the internal reference. Green stars represent the peaks of DMSO- d_6 used as solvent. Red stars represent the peaks of DMSO- d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO- d_6 and from internal reference, respectively. A star mark in blue color represents the peak for CD₃NO₂.

Fig. S82 ¹H NMR (400 MHz, 20 °C) titration spectra of nitrate complex **6b** (10.3 mM) in DMSO- d_6 with varying amount of CDCl₃ with TMS (in DMSO- d_6) as the internal reference. Green stars represent the peaks of DMSO- d_6 used as solvent. Red stars represent the peaks of DMSO- d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO- d_6 and from internal reference, respectively. A star mark in blue color represents the peak for CDCl₃. The spectrum in red color was recorded after partial evaporation of CDCl₃ from the mixture solution, showing reversible binding of nitrate anion by receptor **6'**.

Fig. S83 ¹H NMR (400 MHz, 20 °C) titration spectra of nitrate complex **6b** (10.3 mM) in DMSO- d_6 with varying amount of acetone- d_6 with TMS (in DMSO- d_6) as the internal reference. Green stars represent the peaks of DMSO- d_6 used as solvent. Red stars represent the peaks of DMSO- d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO- d_6 and from internal reference, respectively. A star mark in blue color represents peak for acetone- d_6 . The spectrum in red color was recorded after partial evaporation of acetone- d_6 from the mixture solution, showing reversible binding of nitrate anion by receptor **6'**.

Fig. S84 ¹H NMR (400 MHz, 20 °C) titration spectra of nitrate complex **6b** (10.3 mM) in DMSO- d_6 with varying amount of CD₃NO₂ with TMS (in DMSO- d_6) as the internal reference. Green stars represent the peaks of DMSO- d_6 used as solvent. Red stars represent the peaks of DMSO- d_6 from the internal reference. Circles in red color represent the peaks for water from DMSO- d_6 (internal reference). A star mark in blue color represents the peak for CD₃NO₂.

Fig. S85 Concentration dependent ¹H NMR of 5_2 in CDCl₃ showing the self-assembled capsule exists till 1×10^{-8} M concentration without formation of any side products.

Fig. S86 Partial ¹H NMR titration spectra of perchlorate complex 1c (2.96×10^{-3} M) with tetrabutylammonium nitrate in acetone- d_6 .

Fig. S87 Partial ¹H NMR titration spectra of perchlorate complex **1'c** (1.48×10^{-3} M) with tetrabutylammonium nitrate in acetone-*d*₆.

Fig. S88 Partial ¹H NMR titration spectra of perchlorate complex **2c** (1.48×10^{-3} M) with tetrabutylammonium nitrate in acetone-*d*₆.

Fig. S89 Partial ¹H NMR titration spectra of perchlorate complex **3c** (1.48×10^{-3} M) with tetrabutylammonium nitrate in acetone-*d*₆.

Fig. S90 Partial ¹H NMR titration spectra of perchlorate complex 4c (1.48×10^{-3} M) with tetrabutylammonium nitrate in acetone- d_6 .

Fig. S91 Partial ¹H NMR titration spectra of perchlorate complex **5c** (1.48×10^{-3} M) with tetrabutylammonium nitrate in acetone-*d*₆.

Fig. S92 Partial ¹H NMR titration spectra of perchlorate complex **6c** (1.48×10^{-3} M) with tetrabutylammonium nitrate in acetone-*d*₆.

Fig. S93 Partial ¹H NMR titration spectra of perchlorate complex 7c (1.48×10^{-3} M) with tetrabutylammonium nitrate in acetone-*d*₆.

Fig. S94 ¹H NMR titration curves of perchlorate complexes $(1.48 \times 10^{-3} \text{ M})$ with tetrabutylammonium nitrate in acetone-*d*₆.

pH dependent reversible binding of NO₃ anion by compound 1':

Fig. S95 ¹H NMR spectra (400 MHz, DMSO- d_6 , 20 °C) of complex **1b** (49 mM) showing proton-induced reversible binding of nitrate anion. (a) ¹H NMR spectrum of complex **1b** in DMSO- d_6 . (b) After treating with 2.5 equiv. of KOH. (c) ¹H NMR spectrum of compound **1'** in DMSO- d_6 . (d) Acidification with trifluoroacetic acid retained its yellow color. (e) Compound **1'** in DMSO- d_6 in presence of trifluoroacetic acid. The star mark in green and red color represent the peaks for DMSO- d_6 and for trifluoroacetic acid.

	6a	5_{2}	
Empirical formula	C ₄₈ H ₄₉ N ₅ O ₉	C ₄₅ H ₃₉ N ₇ O ₁₂	
Formula weight	839.92	869.83	
Crystal system	Trigonal	Monoclinic	
Space group	P -3	P 21/c	
a (Å)	15.5323(6)	23.327 (14)	
b (Å)	15.5323(6)	11.333 (6)	
c (Å)	11.4631(6)	15.245 (9)	
α (°)	90	90	
β (°)	90	99.7	
γ (°)	120	90	
V (Å ³)	2394.99(18)	3973 (4)	
Z	2	4	
Temperature	200(2) K	200(2) K	
Wavelength (Å)	0.71073	0.71073	
$\rho_{cal} Mg/m^3$	1.165	1.454	
μ, mm ⁻¹	0.081	0.108	
F (000)	888	1816	
Independent reflection	2791	4927	
Reflection used	15166	6537	
R _{int} value	0.0626	0.0554	
Refinement method	Full-matrix least-squares on F2	Full-matrix least-squares on F2	
GOOF	1.079	1.651	
R indices[I>2sigma(I)]	R1 = 0.1807, wR2 = 0.4861	R1 = 0.1700, wR2 = 0.4652	
R indices(all data)	R1 = 0.2109, wR2 = 0.4985	R1 = 0.2315, wR2 = 0.4923	

Table T1. Crystallographic data and structure refinements for 6a and 5₂.

Table T2. Hydrogen bonding distances (Å) and Bond angles (°) in complex 6a

Bond distances (Å)		Bond angles (°)	
N1-H1N3	6.970	N1-H1O3	180.00
N2-H2O3	2.234	N2-H2O3	159.77
С7-Н7О3	2.567	С7-Н7О3	160.13
C1-H1AO3	2.636	C1-H1AO3	148.15
С11-Н11О3	2.561	С11-Н11О3	130.25