Electronic Supplementary Information

Nano-micelles Based on Rosin Derivative as Potent Sorbents and Sinking Agents with High Absorption Capability for Removal of Metal Ions

Wei-Xin Tan,^{a,&} Zuan-Tao Lin,^a,[&] Huai-Tian Bu,^b Yanan Tian,^c and Gang-Biao Jiang^a*

^aDepartment of Pharmaceutical Engineering, South China Agricultural University, Guangzhou

510642, China.

^bSINTEF Materials and Chemistry, PO Box 124 Blindern, N-0314 Oslo, Norway

^cDepartment of Veterinary Physiology and Pharmacology, Mail Stop 4466, Texas A&M University, College Station, TX 77843, USA.

*Corresponding author (E-mail: jgb3h@163.com. Tel: +86 20 85280293; Fax: +86 20 85280292)

&These authors contributed equally to this work.

Table S	S1. Assignment	of main s	pectral	peaks	based of	on their	energies	(BE)	and	related	content	(RC)	for	origina	I TEPA	-MPA	and '	TEPA-	-MPA	after	adsorp	otion of	of
			F	F				· ·				< - /									····· F		

metal ions.

Element	Original TEF	PA-MPA	TEPA-MPA	after adsorption	TEPA-MPA	after adsorption	TEPA-MPA a	assignments		
			of Ni(II)		of Cu(II)		of Cr(III)			
	BE (eV)	RC (%)	BE (eV)	RC (%)	BE (eV)	RC (%)	BE (eV)	RC (%)	-	
N 1s	398.89	64.15	399.99	75.63	400.32	87.80	399.95	59.08	-NH ₂ ,-NH	
N 1s	400.95	35.85	401.05	24.37	401.72	12.20	401.75	40.92	$-NH_3^+$	
C 1s	282.80	46.50	284.79	62.52	284.81	62.52	284.80	69.87	C-C	
C 1s	285.61	43.78	285.80	28.87	286.03	22.90	286.16	18.78	C-N, C-O	
C 1s	287.48	10.71	288.19	8.61	288.53	7.01	288.46	11.35	C=O	
O 1s	530.78	45.95	532.24	64.22	532.21	59.00	532.20	66.32	C=O	
O 1s	531.94	54.05	533.29	35.78	533.11	41.00	533.50	33.68	C-0	