Supporting Information

Palladium-Catalyzed Cyanide Metathesis: Utilization of Benzyl Cyanide as an Operator-Benign Reagent for Aryl Halide Cyanations

Qiaodong Wen, Jisong Jin, Binbin Hu, Ping Lu*, Yanguang Wang* Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China E-mail:<u>pinglu@zju.edu.cn; orgwyg@zju.edu.cn;</u> Fax: (+86) 571-87952543

Table of Contents

1. General experimental details	S 2
2. Optimization of reaction conditions	S 3
3. Spectral data for the products	S 4-7
4. The detection of CN ⁻ by the picric acid strip	S 7
5. References	S 8
6. Copies of the products ¹ H NMR and ¹³ C NMR	S 9-21
7. Other data	S 22-26

1. General experimental details:

Melting points were recorded on a BÜCHI 535. NMR spectra were obtained on a Bruker AVANCE DMX500 spectrometer operating at 500 MHz or 400 MHz for ¹H-NMR, 125 MHz or 100 MHz for ¹³C-NMR in CDCl₃.Chemicals were either purchased or purified by standard techniques without special instructions. Chemical shifts were quoted in parts per million (ppm) referenced to the appropriate solvent peak or 0.0 ppm for tetramethylsilane. The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, t = triplet, m = multiplet. Coupling constants J, were reported in hertz unit(Hz). Chemical shifts (in ppm) were referenced to tetramethylsilane ($\delta = 0$ ppm) in CDCl₃ as an internal standard. ¹³C NMR spectra were obtained by using the same NMR spectrometers and chemical shifts were reported in ppm referenced to the center line of a triplet at 77.36 ppm of CDCl₃.

Typical experimental procedures for the reaction of aryl halide and benzyl cyanide: A 25mL round-bottom flask was charged with aryl halide (1 mmol), benzyl cyanide (176 mg, 1.5 mmol), K_2CO_3 (690 mg, 5 mmol), *n*-Bu₄NBr (322 mg, 1 mmol), Pd(OAc)₂ (11.2 mg, 0.05 mmol), and DMF (5 mL). The reaction mixture was stirred at 90 °C (oil bath) for 8 h. After cooling to room temperature, the resultant mixture was added to 30mL water, extracted with DCM (3×5 mL), and dried over anhydrous Na₂SO₄. The dichloromethane was evaporated under reduced pressure and the residue was purified by flash column chromatography on a silica gel to give the products.

Procedure for 1c to 2c in 5 mmol scale: 1c (1.17 g, 5 mmol), benzyl cyanide (878 mg, 7.5 mmol), K_2CO_3 (3.45 g, 25 mmol), *n*-Bu₄NBr (1.61 g, 5 mmol), Pd(OAc)₂ (56 mg, 0.25 mmol), and DMF (30 mL). The reaction gave **2c** (345 mg) in 52% yield along with 4,4'-dimethoxy-1,1'-biphenyl (226 mg) in 42% yield.

Procedure for the reaction of 1p with benzyl cyanide in 5 mmol scale: 1p (1.23 g, 5 mmol), benzyl cyanide (878 mg, 7.5 mmol), K_2CO_3 (3.45 g, 25 mmol), *n*-Bu₄NBr (1.61 g, 5 mmol), Pd(OAc)₂ (56 mg, 0.25 mmol), and DMF (30 mL). The reaction gave a mixture (440 mg) of **2na** and **2nb** in 46% yield.

2. Optimization of reaction conditions for the preparation of 2j

Table S1 Screening of reaction condition of 9-bromoanthracene and benzyl cyanide catalyzed by palladium^a

Br		Pd Cat.		ÇN				
1m		Bas		se				
		+ PhCł	H₂CN <i>n-</i> Bu₄NX	─── > <i>n-</i> Bu₄NX , Solvent				
		Т		Г	2j			
Entry	Pd Cat.	Base (equiv.)	<i>n</i> -Bu ₄ NX (equiv.)	Solvent	Temp (°C)	Yield(%) ^b		
1	5%PdCl ₂	K ₂ CO ₃ (5)	<i>n</i> -Bu ₄ NBr (1)	DMF	90	86		
2	$5\% Pd(OAc)_2$	$K_{2}CO_{3}(5)$	<i>n</i> -Bu ₄ NBr (1)	DMF	90	88		
3	5% PdCl ₂ (PPh ₃) ₂	$K_{2}CO_{3}(5)$	n-Bu ₄ NBr (1)	DMF	90	n.d.		
4	5% Pd(OAc) ₂	K ₂ CO ₃ (5)	n-Bu ₄ NBr (1)	DMF	90	n.d.		
	10%PPh ₃							
5 ^{<i>c</i>}	5%Pd(PPh ₃) ₄	$K_{2}CO_{3}(5)$	<i>n</i> -Bu ₄ NBr (1)	DMF	90	trace		
6 ^{<i>c</i>}	$5\% Pd(OAc)_2$	K ₂ CO ₃ (5)	n-Bu ₄ NBr (1)	DMF	90	15		
7	2.5% Pd(OAc) ₂	K ₂ CO ₃ (5)	n-Bu ₄ NBr (1)	DMF	90	trace		
8	$3\% Pd(OAc)_2$	K ₂ CO ₃ (5)	n-Bu ₄ NBr (1)	DMF	90	trace		
9	$4\% Pd(OAc)_2$	K ₂ CO ₃ (5)	n-Bu ₄ NBr (1)	DMF	90	78		
10	10% Pd(OAc) ₂	K ₂ CO ₃ (5)	n-Bu ₄ NBr (1)	DMF	90	86		
11	$5\% Pd(OAc)_2$	K ₂ CO ₃ (4)	n-Bu ₄ NBr (1)	DMF	90	83		
12	$5\% Pd(OAc)_2$	K ₂ CO ₃ (2)	n-Bu ₄ NBr (1)	DMF	90	80		
13	5% Pd(OAc) ₂	$K_{2}CO_{3}(1)$	<i>n</i> -Bu ₄ NBr (1)	DMF	90	70		
14	5% $Pd(OAc)_2$	K ₂ CO ₃ (0)	n-Bu ₄ NBr (1)	DMF	90	40		
15	$5\% Pd(OAc)_2$	NaHCO ₃ (5)	n-Bu ₄ NBr (1)	DMF	90	40		
16	5% $Pd(OAc)_2$	NaOAc (5)	n-Bu ₄ NBr (1)	DMF	90	trace		
17	$5\% Pd(OAc)_2$	Et ₃ N (5)	n-Bu ₄ NBr (1)	DMF	90	trace		
18	$5\% Pd(OAc)_2$	K ₂ CO ₃ (5)	<i>n</i> -Bu ₄ NBr (0.5)	DMF	90	66		
19	5% $Pd(OAc)_2$	K ₂ CO ₃ (5)	n-Bu ₄ NBr (2)	DMF	90	77		
20	5% $Pd(OAc)_2$	K ₂ CO ₃ (5)	n-Bu ₄ NBr (0)	DMF	90	59		
21	$5\% Pd(OAc)_2$	K ₂ CO ₃ (5)	n-Bu ₄ NCl (1)	DMF	90	77		
22	5% Pd(OAc) ₂	$K_{2}CO_{3}(5)$	n-Bu ₄ NI (1)	DMF	90	53		
23	$5\% Pd(OAc)_2$	K ₂ CO ₃ (5)	n-Bu ₄ NF·3H ₂ O (1)	DMF	90	n.d		
24	5% $Pd(OAc)_2$	$K_2CO_3(0)$	n-Bu ₄ NBr (0)	DMF	90	trace		
25	5% Pd(OAc) ₂	$K_{2}CO_{3}(5)$	n-Bu ₄ NBr (1)	DMAc	90	34		
26	$5\% Pd(OAc)_2$	K ₂ CO ₃ (5)	n-Bu ₄ NBr (1)	Dioxane	90	54		
27	5% $Pd(OAc)_2$	K ₂ CO ₃ (5)	n-Bu ₄ NBr (1)	DMSO	90	n.d		
28	$5\% Pd(OAc)_2$	K ₂ CO ₃ (5)	n-Bu ₄ NBr (1)	THF	90	trace		
29	5% $Pd(OAc)_2$	K ₂ CO ₃ (5)	n-Bu ₄ NBr (1)	DMF	110	85		
30	$5\% Pd(OAc)_2$	K ₂ CO ₃ (5)	n-Bu ₄ NBr (1)	DMF	70	6		
^a Reaction conditions: unless otherwise specified, the reaction was carried out under air, 8 h. ^b Isolated yield. ^c under N ₂ .								

3. Spectral data for the products:

2-aminobenzonitrile (2a)

brown solid, m.p. 49-50 °C (Lit.¹, 48-50 °C) ¹H NMR (500 MHz, CDCl₃): δ 7.38 (d, *J* = 7.8 Hz, 1H), 7.34-7.31 (m, 1H), 6.75-6.72 (m, 2H), 4.43 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) : δ 149.9, 134.3, 132.6, 118.2, 117.9, 115.4, 96.2.

4-aminobenzonitrile (2b)

 H_2N -CN

yellow solid, m.p. 85-87 °C (Lit.¹, 84-86 °C)

¹H NMR (400 MHz, CDCl₃) : δ 7.42 (d, J = 8.5 Hz, 2H), 6.65 (d, J = 8.5 Hz, 2H), 4.18 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) : δ 150.6, 134.1, 120.5, 114.7, 100.4.

4-methoxybenzonitrile (2c)

white solid, m.p. 60-61 °C (Lit.², 60-62 °C)

¹H NMR (400 MHz, CDCl₃) : δ 7.59 (d, J = 8.6 Hz, 2H), 6.96 (d, J = 8.6 Hz, 2H), 3.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) : δ 163.1, 134.2, 119.5, 115.0, 104.2, 55.8.

4-methylbenzonitrile (2d)

H₃C-CN

white solid, m.p. 29-30 °C (Lit.³, 29-30 °C) ¹H NMR (400 MHz, CDCl₃) : δ 7.53 (d, *J* = 7.6 Hz, 2H), 7.27 (d, *J* = 7.6 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) : δ 143.9, 132.2, 130.0, 119.4, 109.4, 22.0.

4-hydroxybenzonitrile (2e)

white solid, m.p. 112-113 °C (Lit.⁴, 111-113 °C) ¹H NMR (400 MHz, CDCl₃) : δ 7.57 (d, *J* = 8.4 Hz, 2H), 6.95 (d, *J* = 8.4 Hz, 2H), 6.58 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) : δ 160.4, 134.6, 119.5, 116.8, 103.5. 4-benzoylbenzonitrile (2f)

CN

white solid, m.p. 113-114 °C (Lit.⁵, 113-114 °C) ¹H NMR (400 MHz, CDCl₃) : δ 7.88 (d, *J* = 8.0 Hz, 2H), 7.81-7.78 (m, 4H), 7.65 (dd, *J*₁ = *J*₂ = 7.2 Hz, 1H), 7.52 (dd, *J*₁ = *J*₂ = 7.6 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) : δ 195.3, 141.5, 136.5, 133.6, 132.4, 130.5, 130.3, 128.9, 118.3, 115.9.

4-acetylbenzonitrile (2g)

CN

white solid, m.p. 57-58 °C (Lit.⁶, 56-58 °C)

¹H NMR (500 MHz, CDCl₃) : δ 8.05 (d, J = 8.3 Hz, 2H), 7.79 (d, J = 8.3 Hz, 2H), 2.66 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) : δ 196.8, 140.2, 132.8, 129.0, 118.2, 116.7, 27.1.

3-cyanopyridine (2h)

white solid, m.p. 51-52 °C (Lit.⁷, 50-51 °C) ¹H NMR (500 MHz, CDCl₃) : δ 8.92 (s, 1H), 8.85-8.84 (m, 1H), 8.00 (dd, J_1 = 8.0 Hz, J_2 = 1.5 Hz, 1H), 7.49-7.46 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) : δ 153.2, 152.7, 139.5, 123.8, 116.7, 110.3.

1-naphthonitrile (2i)

white solid, m.p. 36-37 °C (Lit.², 35-36 °C)

¹H NMR (500 MHz, CDCl₃) : δ 8.21 (d, J = 8.3 Hz, 1H), 8.05 (d, J = 8.3 Hz, 1H), 7.89 (dd, J_1 = 9.0 Hz, J_2 = 7.5 Hz, 2H), 7.67 (dd, J_1 = 7.0 Hz, J_2 = 7.5 Hz, 1H), 7.60 (dd, J_1 = 8.0 Hz, J_2 = 7.0 Hz, 1H), 7.50 (dd, J_1 = 7.5 Hz, J_2 = 8.0 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃) : δ 133.5, 133.1, 132.8, 132.6, 128.9, 128.8, 127.8, 125.3, 125.1, 118.1, 110.4.

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2012

anthracene-9-carbonitrile (2j)

yellow solid, m.p. 175-176 °C (Lit.⁸, 173-177 °C) ¹H NMR (400 MHz, CDCl₃) : δ 8.60 (s, 1H), 8.37 (d, *J* = 8.4 Hz, 2H), 8.03 (d, *J* = 8.4 Hz, 2H), 7.68 (dd, *J*₁ = *J*₂ = 7.6 Hz, 2H), 7.55 (dd, *J*₁ = *J*₂ = 7.6 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) : δ 133.5, 133.0, 130.8, 129.2, 129.2, 126.6, 125.5, 117.5, 105.5.

9,9-dibutyl-9H-fluorene-2-carbonitrile (2k)

white solid, m.p. 103-104 °C

¹H NMR (500 MHz, CDCl₃) : δ 7.77-7.73 (m, 2H), 7.64-7.61 (m, 2H), 7.39-7.37 (m, 3H), 2.01-1.95 (m, 4H), 1.11-1.03 (m, 4H), 0.67 (t, *J* = 7.4 Hz, 6H), 0.58-0.48 (m, 4H).

¹³C NMR (125 MHz, CDCl₃) : δ 151.7, 151.6, 146.0, 139.4, 131.5, 129.2, 127.5, 126.7, 123.4, 121.1, 120.5, 120.2, 110.1, 55.7, 40.2, 26.1, 23.2, 14.0.

IR (KBr) : 2951, 2929, 2860, 2220, 1466, 1452, 831, 737, 590 cm⁻¹.

HRMS : cacld. for $C_{22}H_{25}N$ [M⁺], 303.1987; found, 303.1985.

9-heptyl-9H-carbazole-3,6-dicarbonitrile (2l)

yellow solid, m.p. 172-173 °C

¹H NMR (400 MHz, CDCl₃) : δ 8.41 (s, 2H), 7.79 (d, J = 8.6 Hz, 2H), 7.53 (d, J = 8.6 Hz, 2H), 4.36 (t, J = 7.2 Hz, 2H), 1.94-1.83 (m, 2H), 1.35-1.25 (m, 8H), 0.86 (t, J = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) : δ 143.0, 130.6, 126.0, 122.4, 120.1, 110.5, 103.7, 44.1, 31.9, 29.2, 29.1, 27.4, 22.8, 14.3.

IR (KBr) : 2926, 2856, 2220, 1596, 1483, 821, 593 cm⁻¹.

HRMS : cacld. for $C_{21}H_{21}N_3$ [M⁺], 315.1735; found, 315.1737.

9-heptyl-6-iodo-9H-carbazole-3-carbonitrile (2m)

brown solid, m.p. 117-118 °C

¹H NMR (400 MHz, CDCl₃) : δ 8.39 (s, 1H), 8.31 (s, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.71 (d, J = 8.4 Hz, 1H), 7.43 (d, J = 8.4 Hz, 1H), 7.23 (d, J = 8.4 Hz, 1H), 4.28 (t, J = 7.2 Hz, 2H), 1.89-1.79 (m, 2H), 1.32-1.24 (m, 8H), 0.85 (t, J = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) : δ 142.2, 140.4, 135.6, 129.9, 129.8, 125.7, 124.6, 121.9, 120.6, 111.6, 109.9, 102.4, 83.1, 43.8, 31.9, 29.3, 29.1, 27.4, 22.8, 14.3.

IR (KBr) : 3474, 3414, 2928, 2853, 2221, 1479, 802 cm⁻¹.

HRMS : cacld. for $C_{20}H_{21}IN_2$ [M⁺], 416.0749; found, 416.0747.

4. The detection of CN⁻ by the picric acid strip

Preparation of the picric acid strip:

Picric acid strip was prepared by wetting filter paper with a solution of 5.0 g of sodium bicarbonate and 0.5 g picric acid in 100 mL water. After drying the paper, it was cut into strips for use.

Strip test of the cyanide anion:

Tartaric acid (0.2 g) and the target solution (1.5 mL) were added into a flask. A sealed plastic vial, with a number of holes and a strip inside, was placed above the reaction mixture. The flask was heated in the water bath under 80 °C for 20 minutes. The strip turned red indicating the existence of CN^{-10}

Entry	9-Br anthracene 0.5 mmol	Pd(OAc) ₂ 0.025 mmol	<i>n</i> -Bu ₄ NBr 0.5 mmol	K ₂ CO ₃ 2.5 mmol	Cyanation reagent 0.75 mmol	color
1					PhCH ₂ CN	yellow
2	\checkmark	\checkmark	\checkmark	\checkmark	PhCH ₂ CN	pink
3		\checkmark	\checkmark	\checkmark	PhCH ₂ CN	pink
4				\checkmark	PhCH ₂ CN	yellow
5			\checkmark		PhCH ₂ CN	yellow
6			\checkmark	\checkmark	PhCH ₂ CN	yellow
7		\checkmark			PhCH ₂ CN	yellow
8					K ₃ [Fe(CN) ₆] ^b	pink
9					NaCN ^b	red

Table S2 Detection of CN^{-} by the picric acid strip^{*a*}

^{*a*}*Reaction conditions*: The mixture was heated under 90 °C in 3 mL DMF for 2 h. ^{*b*} 0.25 mmol $K_3[Fe(CN)_6]$ or NaCN was tested.

5. References

- 1 J. A. Campbell, G. McDougald, H. McNab, L. V. C. Rees, R. G. Tyas, *Synthesis*, 2007, **20**, 3179–3184.
- 2 Y. Suzuki, K. Moriyama, H. Togo, Tetrahedron, 2011, 67, 7956–7962.
- 3 P. Supsana, T. Liaskopoulos, P. G. Tsoungas, G. Varvounis, Synlett, 2007, 17, 2671–2674.
- 4 Y. Cao, Z. Zhang, Y. Guo, J. Chem. Technol. Biotechnol., 2008, 83, 1441–1444.
- 5 C. Duplais, F. Bures, I. Sapountzis, T. J. Korn, G. Cahiez, P. Knochel, *Angew. Chem. Int. Ed.*, 2004, **43**, 2968–2970.
- 6 M. Lamani, K. R. Prabhu, Angew. Chem. Int. Ed., 2010, 49, 6622–6625.
- 7 M. Hatsuda, M. Seki, Tetrahedron, 2005, 61, 9908-9917.
- 8 O. Grossman, D. Gelman, Org. Lett., 2006, 8, 1189–1191.
- 9 For the synthesis of the starting materials 1g, 1m, 1n, see: (a) A. Zarei, A. R. Hajipour, L. Khazdooz, *Synthesis*, 2009, 6, 941–944; (b) S. H. Lee, T. Nakamura, T. Tsutsui, *Org. Lett.*, 2001, 3, 2005–2007; (c) Z. Zhao, X. Xu, H. Wang, P. Lu, G. Yu, Y. Liu, *J. Org. Chem.*, 2008, 73, 594–602.
- 10 J. Kim, J. Choi, K. Shin and S. Chang, J. Am. Chem. Soc., 2012, 134, 2528; G. Zhang, X. Ren, J. Chen, M. Hu, and J. Cheng, Org. Lett., 2011, 13, 5004.

6. ¹H NMR and ¹³C NMR of the products

Figure S1¹H-NMR spectrum of 2a

Figure S9 ¹H-NMR spectrum of 2e

Figure S11 ¹H-NMR spectrum of 2f

Figure S19 ¹H-NMR spectrum of 2j

7. Other data

< 0.010 $\int_{7.224}^{7.485} \frac{7.485}{7.470}$ СН₃ 3.930H 4.169म 6.000H 7.5 5.0 4.5 4.0 f1 (ppm) 3.5 9.0 8.5 8.0 7.0 6.5 6.0 5.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

Figure S27 ¹H-NMR spectrum of 4,4'-dimethyl-1,1'-biphenyl

Figure S28 ¹³C-NMR spectrum of 4,4'-dimethyl-1,1'-biphenyl

Figure S30 ¹³C-NMR spectrum of 4,4'-dimethoxy-1,1'-biphenyl

Figure S31 ¹H-NMR spectrum of the mixture of 2na and 2nb

Figure S32 GC-MS result of the mixture of 2na and 2nb

Sample Information E:\zju\l-wq-331.QGD

Library <~ Target >> Line#1. R.Time:5.223(Scan#:968) MassPeaks:140 RawMode:Averaged 5.220-5.227(967-969) BasePeak:193.05(6283011) BG Mode:Calc. from Peak. Group 1 - Event 1 95 |, 101 63 177 Immerijaanaafinaanaliinaatiinallisuttu kultuuna kult 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 uitrile # \$\$
113
113
117
117
117
117
117
117
117
117
118
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
200
210
220
230
240
250
260
270

Hit#3
Entry:37010
Hitary:NISTS:LIB
St&F formula:C14H11N
CAS:31603-77-7
MolWeight:193
RetIndec:1825
CompName:[1,1'-Biphenyl]-4-acctonitrile SS p-Biphenylsacetonitrile SS p-Biphenylsacetonitrile SS 4-Biphenylsacetonitrile SS 4-Biphenylsa 177

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270

