Metal-Free Pinnick-type Oxidative Amidation of Aldehydes

Kien Soon Goh and Choon-Hong Tan*

Division of Chemistry and Biological Chemistry

School of Physical and Mathematical Sciences

Nanyang Technological University

Singapore 637371 (Singapore)

Corresponding Author: choonhong@ntu.edu.sg

Supporting Information

Table of Contents

1.	General Experimental	S2
2.	General Procedure	S2
3.	Procedure for Gram-Scale Synthesis of Amide 23	S2
4.	Characterization of Products	S3
5.	NMR Spectra of Products	S17
6.	Chiral HPLC Chromatograms for Amides 38 - 40	S57

1. General Experimental

¹H and ¹³C NMR spectra were recorded on a Bruker ACF300 (300MHz) or Bruker DPX300 (300MHz) spectrometer. Chemical shifts are reported in parts per million (ppm). The residual solvent peak was used as an internal reference. Low resolution mass spectra were obtained on a Finnigan/MAT LCQ spectrometer in ESI mode. High resolution mass spectra were obtained on a Finnigan/MAT 95XL-T spectrometer. Enantiomeric excess values were determined by chiral HPLC analysis on Dionex Ultimate 3000 HPLC units, including a Ultimate 3000 Pump, Ultimate 3000 variable Detectors. Melting points were determined on a BÜCHI B-540 melting point apparatus. Flash chromatography separations were performed on Merck 60 (0.040 - 0.063mm) mesh silica gel. Toluene was distilled from sodium/benzophenone and stored under N₂ atmosphere. MeCN was dried by Molecular Sieve. Other reagents and solvents were commercial grade and were used as supplied without further purification, unless otherwise stated. All experiments were monitored by analytical thin layer chromatography (TLC). Instrumentations: Proton nuclear magnetic resonance (¹H NMR) and carbon NMR (¹³C NMR) spectra were recorded in CDCl₃ unless otherwise stated.

2. General Procedure

Aldehyde (0.10 mmol, 1 equiv), amine (0.15 mmol, 1.5 equiv) and 2,3-dimethylbut-2-ene (0.50 mmol, 5 equiv) were added into toluene (0.5 mL) and allowed to stir for 5 minutes. NaClO₂ (0.3125 mmol, 3.125 equiv) and NaH₂PO₄ (0.35 mmol, 3.5 equiv) were then added to the reaction mixture. The reaction mixture was allowed to stir at 40 °C for 15 – 26 hours and monitored by TLC. After the reaction was completed, the reaction mixture was diluted with anhydrous diethyl ether (5 mL), followed by adding saturated K₂CO₃ (5 mL). The aqueous layer was extracted with anhydrous diethyl ether (3 × 10 mL). The combined organic layers were dried over anhydrous sodium sulphate and the solvent was removed *in vacuo*. The residue was purified by flash chromatography (gradient elution with hexane/ethyl acetate 20/1 to 2/1).

3. Procedure for Gram-Scale Synthesis of Amide 22

Ethyl glyoxylate (ca. 50% soln. in toluene) (1.98 mL, 10.0 mmol, 1 equiv) and n-butylamine (1.48 mL, 15.0 mmol, 1.5 equiv) and 2,3-dimethylbut-2-ene (5.94 mL, 50.0 mmol, 5 equiv) were added into toluene (50 mL) in a 100 mL round bottom flask and allowed to stir for 5 minutes. NaClO₂ (2.826 g, 31.25 mmol, 3.125 equiv) and NaH₂PO₄ (4.83 g, 35.0 mmol, 3.5 equiv) were then added to the reaction mixture. The reaction mixture was allowed to stir at 40 °C for 18 hours. After the reaction was completed, the reaction mixture was diluted with anhydrous diethyl ether (50 mL), followed by adding saturated K₂CO₃ (50 mL). The aqueous layer was extracted with anhydrous diethyl ether (3 × 50 mL). The combined organic layers were dried over anhydrous sodium sulphate and the solvent was removed *in vacuo*. The residue was purified by flash chromatography (gradient elution with hexane/ethyl acetate 15/1 to 2/1), providing amide **22** (1.52 g, 88%) as a pale yellow oil.

4. Characterization of Products

Amide 1: N-butyl-4-chlorobenzamide

Following the above general procedure with 4chlorobenzaldehyde (14.1 mg, 0.10 mmol, 1 equiv) and nbutylamine (14.8 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **1** (20.3 mg, 96%) as a white solid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.69 (d, J = 8.5 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 6.24 (s, 1H), 3.43 (dd, J = 13.3, 6.6 Hz, 2H), 1.63 – 1.53 (m, 2H), 1.40 – 1.35 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.47, 137.47, 133.16, 128.72, 128.27, 39.88, 31.64, 20.11, 13.73.

LRMS (ESI) $m/z 212.1 (M + H^{+})$ **HRMS (ESI)** $m/z 212.0841 ([M + H^{+}])$, calc. for $[C_{11}H_{14}CINO + H^{+}] 212.0837$.

Amide 2: N-butylbenzamide

Following the above general procedure with benzaldehyde (10.2 μ L, 0.10 mmol, 1 equiv) and n-butylamine (14.8 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **2** (14.2 mg, 80%) as a pale yellow oil.

¹**H** NMR (300 MHz, CDCl₃) δ 7.75 (dd, J = 8.2, 1.4 Hz, 2H), 7.51 – 7.37 (m, 3H), 6.24 (s, 1H), 3.44 (dd, J = 12.9, 7.0 Hz, 2H), 1.64 – 1.54 (m, 2H), 1.46 – 1.34 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.55, 134.82, 131.26, 128.49, 126.80, 39.78, 31.70, 20.12, 13.74.

LRMS (ESI) m/z 178.1 (M + H⁺) **HRMS (ESI)** m/z 178.1227 ([M + H⁺]), calc. for $[C_{11}H_{15}NO + H^{+}]$ 178.1226.

Amide 3: N-butyl-4-nitrobenzamide

Following the above general procedure with 4nitrobenzaldehyde (15.1 mg, 0.10 mmol, 1 equiv) and nbutylamine (14.8 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **3** (20.0 mg, 90%) as a white solid.

¹**H** NMR (300 MHz, CDCl₃) δ 8.25 (d, J = 8.6 Hz, 2H), 7.92 (d, J = 8.7 Hz, 2H), 6.41 (s, 1H), 3.46 (dd, J = 13.0, 7.1 Hz, 2H), 1.66 – 1.56 (m, 2H), 1.47 – 1.34 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 165.49, 149.44, 140.41, 128.04, 123.73, 40.13, 31.52, 20.09, 13.69.

LRMS (ESI) $m/z 244.9 (M + Na^{+})$ **HRMS (ESI)** $m/z 245.0905 ([M + Na^{+}])$, calc. for $[C_{11}H_{14}N_2O_3 + Na^{+}] 245.0897$.

Amide 4: N-butyl-4-cyanobenzamide

Following the above general procedure with 4cyanobenzaldehyde (13.1 mg, 0.10 mmol, 1 equiv) and nbutylamine (14.8 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **4** (19.4 mg, 96%) as a white solid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.86 (d, J = 8.6 Hz, 2H), 7.70 (d, J = 8.5 Hz, 2H), 6.39 (s, 1H), 3.44 (dd, J = 12.9, 7.1 Hz, 2H), 1.64 – 1.54 (m, 2H), 1.45 – 1.33 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 165.71, 138.72, 132.34, 127.58, 117.99, 114.82, 40.03, 31.51, 20.07, 13.68.

LRMS (ESI) $m/z 203.1 (M + H^{+})$ **HRMS (ESI)** $m/z 203.1181 ([M + H^{+}])$, calc. for $[C_{12}H_{14}N_2O + H^{+}] 203.1179$.

Amide 5: N-butyl-4-hydroxybenzamide

Following the above general procedure with 4-hydroxybenzaldehyde (12.2 mg, 0.10 mmol, 1 equiv) and n-butylamine (14.8 μ L, 0.15 mmol, 1.5 equiv) in Toluene:EA (4:1) mixture as the solvent, the crude reaction mixture was purified by flash chromatography to provide amide **5** (15.6 mg, 81%) as a colourless oil.

¹**H** NMR (300 MHz, CDCl₃) δ 7.61 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 6.19 (s, 1H), 3.44 (dd, J = 12.8, 7.0 Hz, 2H), 1.64 – 1.54 (m, 2H), 1.46 – 1.34 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 168.33, 160.06, 128.75, 115.59, 39.97, 31.61, 20.10, 13.73.

LRMS (ESI) m/z 194.1 (M + H⁺) **HRMS (ESI)** m/z 194.1179 ([M + H⁺]), calc. for $[C_{11}H_{15}NO_2 + H^+]$ 194.1176.

Amide 6: N-butyl-4-methoxybenzamide

Following the above general procedure with 4methoxybenzaldehyde (12.2 μ L, 0.10 mmol, 1 equiv) and nbutylamine (14.8 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **6** (15.5 mg, 75%) as a light brown crystalline solid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.72 (d, J = 8.9 Hz, 2H), 6.90 (d, J = 8.9 Hz, 2H), 6.19 (s, 1H), 3.83 (s, 3H), 3.42 (dd, J = 12.2, 7.0 Hz, 2H), 1.63 – 1.53 (m, 2H), 1.45 – 1.33 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.07, 162.01, 128.59, 127.05, 113.66, 55.34, 39.74, 31.77, 20.13, 13.75.

LRMS (ESI) $m/z 208.1 (M + H^{+})$ **HRMS (ESI)** $m/z 208.1338 ([M + H^{+}])$, calc. for $[C_{12}H_{17}NO_2 + H^{+}] 208.1332$.

Amide 7: N-butyl-4-methylbenzamide

Following the above general procedure with 4-methylbenzaldehyde (11.8 μ L, 0.10 mmol, 1 equiv) and n-butylamine (14.8 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **7** (16.4 mg, 86%) as a pale brown oil.

¹**H** NMR (300 MHz, CDCl₃) δ 7.65 (d, J = 8.1 Hz, 2H), 7.21 (d, J = 8.3 Hz, 2H), 6.19 (s, 1H), 3.43 (dd, J = 13.1, 6.7 Hz, 2H), 2.38 (s, 3H), 1.58 – 1.53 (m, 2H), 1.46 – 1.34 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.49, 141.63, 131.92, 129.13, 126.79, 39.72, 31.72, 21.37, 20.12, 13.75.

LRMS (ESI) m/z 192.1 (M + H⁺) **HRMS (ESI)** m/z 192.1387 ([M + H⁺]), calc. for [C₁₂H₁₇NO + H⁺] 192.1383.

Amide 8: 4-bromo-N-butylbenzamide

Following the above general procedure with 4bromobenzaldehyde (18.5 mg, 0.10 mmol, 1 equiv) and nbutylamine (14.8 μ L, 0.15 mmol,1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **8** (18.2 mg, 71%) as an off-white solid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.62 (d, J = 8.6 Hz, 2H), 7.54 (d, J = 8.6 Hz, 2H), 6.21 (s, 1H), 3.43 (dd, J = 12.8, 7.1 Hz, 2H), 1.63 – 1.54 (m, 2H), 1.46 – 1.33 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.55, 133.64, 131.72, 128.46, 125.91, 39.89, 31.65, 20.12, 13.73.

LRMS (ESI) m/z 256.1 (M + H⁺) **HRMS (ESI)** m/z 256.0336 ([M + H⁺]), calc. for $[C_{11}H_{14}BrNO + H^{+}]$ 256.0332.

Amide 9: N-butyl-[1,1'-biphenyl]-4-carboxamide

Following the above general procedure with 4phenylbenzaldehyde (18.2 mg, 0.10 mmol, 1 equiv) and nbutylamine (14.8 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **9** (18.2 mg, 72%) as a white solid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.84 (d, J = 8.3 Hz, 2H), 7.70 – 7.54 (m, 4H), 7.52 – 7.32 (m, 3H), 6.28 (s, 1H), 3.48 (dd, J = 12.7, 7.0 Hz, 2H), 1.67 – 1.55 (m, 2H), 1.49 – 1.37 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.25, 144.10, 140.02, 133.45, 128.87, 127.92, 127.35, 127.16, 39.83, 31.74, 20.15, 13.76.

LRMS (ESI) $m/z 254.1 (M + H^+)$ **HRMS (ESI)** $m/z 254.1544 ([M + H^+])$, calc. for $[C_{17}H_{19}NO + H^+] 254.1539$.

Amide **10**: N-butyl-2-naphthamide

Following the above general procedure with 2-naphthaldehyde (15.6 mg, 0.10 mmol, 1 equiv) and n-butylamine (14.8 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **10** (18.6 mg, 82%) as an off-white solid.

¹**H** NMR (300 MHz, CDCl₃) δ 8.27 (s, 1H), 7.98 – 7.75 (m, 4H), 7.63 – 7.44 (m, 2H), 6.43 (s, 1H), 3.50 (dd, J = 12.7, 7.0 Hz, 2H), 1.69 – 1.59 (m, 2H), 1.50 – 1.37 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.60, 134.62, 132.60, 132.02, 128.83, 128.35, 127.68, 127.49, 127.20, 126.65, 123.56, 39.93, 31.75, 20.16, 13.76.

LRMS (ESI) m/z 228.1 (M + H⁺) **HRMS (ESI)** m/z 228.1392 ([M + H⁺]), calc. for [C₁₅H₁₇NO + H⁺] 228.1383.

Amide 11: N-butylnicotinamide

Following the above general procedure with 3pyridinecarboxaldehyde (9.40 μ L, 0.10 mmol, 1 equiv) and nbutylamine (14.8 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **11** (14.6 mg, 82%) as a pale yellow oil.

¹**H NMR** (**300 MHz**, **CDCl**₃) δ 9.05 (s, 1H), 8.68 (d, J = 4.9 Hz, 1H), 8.18 (dd, J = 7.9, 1.7 Hz, 1H), 7.52 – 7.31 (m, 1H), 6.77 (s, 1H), 3.45 (dd, J = 13.5, 6.5 Hz, 2H), 1.65 – 1.55 (m, 2H), 1.46 – 1.33 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H). ¹³**C NMR** (**75 MHz**, **CDCl**₃) δ 165.22, 151.11, 147.17, 136.01, 130.88, 123.75, 39.95, 31.54, 20.10, 13.69.

LRMS (ESI) m/z 179.2 (M + H⁺) **HRMS (ESI)** m/z 179.1178 ([M + H⁺]), calc. for $[C_{10}H_{14}N_2O + H^+]$ 179.1179.

Amide 12: 4-chloro-N-(furan-2-ylmethyl)benzamide

Following the above general procedure with 4chlorobenzaldehyde (14.1 mg, 0.10 mmol, 1 equiv) and furfurylamine (13.3 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **12** (18.9 mg, 80%) as a pale yellow solid.

¹H NMR (300 MHz, CDCl₃) δ 7.72 (d, J = 8.4 Hz, 2H), 7.38 (m, 3H), 6.56 (s, 1H), 6.33 (dd, J = 3.1, 1.9 Hz, 1H), 6.28 (d, J = 3.2 Hz, 1H), 4.61 (d, J = 5.4 Hz, 2H).¹³C NMR (75 MHz, CDCl₃) δ 166.17, 150.90, 142.35, 137.85, 132.48, 128.79, 128.44, 110.52, 107.81, 37.03.

LRMS (ESI) $m/z 235.9 (M + H^{+})$ **HRMS (ESI)** $m/z 236.0476 ([M + H^{+}])$, calc. for $[C_{12}H_{10}CINO_2 + H^{+}] 236.0473$.

Amide 13: 4-cyano-N-(furan-2-ylmethyl)benzamide

Following the above general procedure with 4cyanobenzaldehyde (13.1 mg, 0.10 mmol, 1 equiv), furfurylamine (13.3 μ L, 0.15 mmol, 1.5 equiv), NaClO₂ (45.2 mg, 0.50 mmol, 5 equiv) and NaH₂PO₄ (55.2 mg, 0.40 mmol, 4 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **13** (19.9 mg, 88%) as a pale yellow solid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.88 (d, J = 8.3 Hz, 2H), 7.71 (d, J = 8.0 Hz, 2H), 7.41 – 7.34 (m, 1H), 6.68 (s, 1H), 6.36 – 6.32 (m, 1H), 6.30 (d, J = 3.2 Hz, 1H), 4.63 (d, J = 5.5 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 165.42, 150.46, 142.48, 138.02, 132.40, 127.75, 117.92, 115.16, 110.57, 108.07, 37.13.

LRMS (ESI) m/z 225.2 (M - H⁺) **HRMS (ESI)** m/z 225.0658 ([M - H⁺]), calc. for $[C_{13}H_{10}N_2O_2 - H^+]$ 256.0670.

Amide 14: 4-cyano-N-(thiophen-2-ylmethyl)benzamide

Following the above general procedure with 4cyanobenzaldehyde (13.1 mg, 0.10 mmol, 1 equiv), 2thiophene methylamine (15.4 μ L, 0.15 mmol, 1.5 equiv), NaClO₂ (45.2 mg, 0.50 mmol, 5 equiv) and NaH₂PO₄ (55.2 mg, 0.40 mmol, 4 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **14** (18.9 mg, 78%) as an off-white solid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.87 (d, J = 8.3 Hz, 2H), 7.71 (d, J = 8.1 Hz, 2H), 7.34 – 7.17 (m, 1H), 7.04 (d, J = 3.4 Hz, 1H), 6.97 (dd, J = 5.0, 3.5 Hz, 1H), 6.64 (s, 1H), 4.81 (d, J = 5.6 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 165.34, 139.91, 138.00, 132.44, 127.72, 127.06, 126.58, 125.64, 117.91, 115.22, 38.97.

LRMS (ESI) m/z 241.2 (M - H⁺) **HRMS (ESI)** m/z 241.0430 ([M - H⁺]), calc. for $[C_{13}H_{10}N_2OS - H^+]$ 241.0441.

Amide 15: N-allyl-4-cyanobenzamide

Following the above general procedure with 4-cyanobenzaldehyde (13.1 mg, 0.10 mmol, 1 equiv) and allylamine (11.2 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **15** (15.8 mg, 85%) as a white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.88 (d, J = 8.5 Hz, 2H), 7.72 (d, J = 8.1 Hz, 2H), 6.45 (s, 1H), 5.93 – 5.85 (m, 1H), 5.28 – 5.18 (m, 2H), 4.08 (t, J = 5.7 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 165.52, 138.32, 133.46, 132.41, 127.65, 117.94, 117.21, 115.05, 42.62.

LRMS (ESI) m/z 185.2 (M - H⁺) **HRMS (ESI)** m/z 185.0718 ([M - H⁺]), calc. for $[C_{11}H_{10}N_2O - H^+]$ 185.0720.

Amide 16: 4-cyano-N-(prop-2-yn-1-yl)benzamide

Following the above general procedure with 4-cyanobenzaldehyde (13.1 mg, 0.10 mmol, 1 equiv), prop-2-yn-1-amine (10.3 μ L, 0.15 mmol, 1.5 equiv), NaClO₂ (45.2 mg, 0.50 mmol, 5 equiv) and NaH₂PO₄ (55.2 mg, 0.40 mmol, 4 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **16** (16.5 mg, 90%) as a pale yellow solid.

¹H NMR (300 MHz, CD₃OD) δ 7.90 (d, J = 8.5 Hz, 2H), 7.77 (d, J = 8.5 Hz, 2H), 4.10 (d, J = 2.5 Hz, 2H), 2.57 (t, J = 2.5 Hz, 1H). ¹³C NMR (75 MHz, CD₃OD) δ 167.91, 139.31, 133.55, 129.26, 119.00, 116.24, 80.38, 72.33, 30.08.

LRMS (ESI) m/z 183.1 (M - H⁺) **HRMS (ESI)** m/z 183.0558 ([M - H⁺]), calc. for [C₁₁H₈N₂O - H⁺] 183.0564.

Amide 17: 4-nitro-N-phenethylbenzamide

Following the above general procedure with 4nitrobenzaldehyde (15.1 mg, 0.10 mmol, 1 equiv), phenethylamine (18.9 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **17** (22.7 mg, 84%) as an off-white solid.

¹**H** NMR (300 MHz, CDCl₃) δ 8.22 (d, J = 8.7 Hz, 2H), 7.82 (d, J = 8.8 Hz, 2H), 7.31 (d, J = 7.4 Hz, 2H), 7.25 – 7.19 (m, 3H), 6.37 (s, 1H), 3.72 (dd, J = 12.9, 6.8 Hz, 2H), 2.94 (t, J = 6.9 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 165.45, 149.48, 140.16, 138.45, 128.77, 128.71, 127.99, 126.76, 123.75, 41.35, 35.42.

LRMS (ESI) m/z 269.3 (M - H⁺) **HRMS (ESI)** m/z 269.0921 ([M - H⁺]), calc. for $[C_{15}H_{14}N_2O_3 - H^+]$ 269.0932.

Amide 18: N-butylpentanamide

Following the above general procedure with pentanal (10.6 μ L, 0.10 mmol, 1 equiv) and n-butylamine (14.8 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **18** (10.5 mg, 67%) as a pale yellow oil.

¹H NMR (300 MHz, CDCl₃) δ 5.80 (s, 1H), 3.22 (dd, J = 12.8, 6.8 Hz, 2H), 2.18 – 2.13 (m, 2H), 1.64 – 1.54 (m, 2H), 1.51 – 1.41 (m, 2H), 1.38 – 1.26 (m, 4H), 0.92 – 0.87 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 173.33, 39.22, 36.44, 31.63, 27.90, 22.34, 20.00, 13.72, 13.67.

LRMS (ESI) $m/z 158.1 (M + H^{+})$, **HRMS (ESI)** $m/z 158.1544 ([M + H^{+}])$, calc. for $[C_9H_{19}NO + H^{+}] 158.1539$.

Amide 19: N-(2,2-dimethoxyethyl)pentanamide

Following the above general procedure with pentanal (10.6 μ L, 0.10 mmol, 1 equiv) and 2,2-dimethoxyethylamine (16.3 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **19** (17.6 mg, 93%) as a pale brown solid.

¹**H** NMR (300 MHz, CDCl₃) δ 5.76 (s, 1H), 4.35 (t, J = 5.3 Hz, 1H), 3.45 – 3.44 (m, 1H), 3.39 (s, 1H), 3.37 (s, 6H), 2.21 – 2.14 (m, 2H), 1.61 – 1.54 (m, 2H), 1.36 – 1.26 (m, 2H), 0.89 (t, J = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 173.42, 102.65, 54.37, 40.83, 36.33, 27.70, 22.29, 13.70.

LRMS (ESI) $m/z 212.0 (M + Na^{+})$, **HRMS (ESI)** $m/z 212.1266 ([M + Na^{+}])$, calc. for $[C_9H_{19}NO_3 + Na^{+}] 212.1257$.

Amide **20**: N-butylcyclohexanecarboxamide

Following the above general procedure with cyclohexanecarboxaldehyde (12.0 μ L, 0.10 mmol, 1 equiv) and n-butylamine (14.8 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **20** (13.5 mg, 74%) as an off-white solid.

¹H NMR (300 MHz, CDCl₃) δ 5.68 (s, 1H), 3.23 (dd, J = 12.5, 6.7 Hz, 2H), 2.12 – 2.03 (m, 1H), 1.88 – 1.74 (m, 4H), 1.68 – 1.63 (m, 1H), 1.51 – 1.18 (m, 9H), 0.91 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 176.27, 45.51, 39.10, 31.66, 29.68, 25.71, 20.01, 13.72.

LRMS (ESI) m/z 184.1 (M + H⁺), **HRMS (ESI)** m/z 184.1704 ([M + H⁺]), calc. for $[C_{11}H_{21}NO + H^{+}]$ 184.1696.

Amide 21: N-(2,2-dimethoxyethyl)cyclohexanecarboxamide

Following the above general procedure with cyclohexanecarboxaldehyde (12.0 μ L, 0.10 mmol, 1 equiv) and 2,2-dimethoxyethylamine (16.3 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **21** (19.4 mg, 90%) as a white solid.

¹**H NMR** (**300 MHz**, **CDCl**₃) δ 5.70 (s, 1H), 4.34 (t, J = 5.3 Hz, 1H), 3.50 – 3.42 (m, 1H), 3.37 (s, 6H), 2.11 – 2.02 (m, 1H), 1.87 – 1.71 (m, 4H), 1.70 – 1.60 (m, 1H), 1.46 – 1.35 (m, 2H), 1.32 – 1.14 (m, 4H). ¹³**C NMR** (**75 MHz**, **CDCl**₃) δ 176.28, 102.71, 54.40, 45.38, 40.72, 29.57, 25.65, 25.63.

LRMS (ESI) m/z 216.0 (M + H⁺), **HRMS (ESI)** m/z 216.1590 ([M + H⁺]), calc. for $[C_{11}H_{21}NO_3 + H^+]$ 216.1594.

Amide 22: N-butyl-3-phenylpropanamide

Following the above general procedure with 3-phenylpropanal (13.3 μ L, 0.10 mmol, 1 equiv) and n-butylamine (14.8 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **22** (12.9 mg, 63%) as a pale yellow oil.

¹**H** NMR (300 MHz, CDCl₃) δ 7.27 (dd, J = 9.1, 5.3 Hz, 2H), 7.23 – 7.16 (m, 3H), 5.77 (s, 1H), 3.20 (dd, J = 11.5, 6.6 Hz, 2H), 2.97 (t, J = 7.6 Hz, 2H), 2.50 (t, J = 7.7 Hz, 2H), 1.49 – 1.34 (m, 2H), 1.31 – 1.18 (m, 2H), 0.88 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 172.43, 140.67, 128.50, 128.34, 126.25, 39.39, 38.32, 31.85, 31.46, 19.93, 13.66.

LRMS (ESI) m/z 206.1 (M + H⁺), **HRMS (ESI)** m/z 206.1547 ([M + H⁺]), calc. for $[C_{13}H_{19}NO + H^{+}]$ 206.1539.

Amide 23: Ethyl 2-(butylamino)-2-oxoacetate

Following the above general procedure with ethyl glyoxylate (ca. 50% soln. in toluene) (19.8 μ L, 0.10 mmol, 1 equiv) and nbutylamine (14.8 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **23** (16.1 mg, 93%) as a pale yellow oil.

¹H NMR (300 MHz, CDCl₃) δ 7.26 (s, 1H), 4.21 (q, J = 7.1 Hz, 2H), 3.22 (dd, J = 13.3, 7.1 Hz, 2H), 1.49 – 1.39 (m, 2H), 1.28 – 1.23 (m, 5H), 0.81 (t, J = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.56, 156.39, 62.72, 39.32, 30.82, 19.66, 13.65, 13.32.

LRMS (ESI) m/z 172.1 (M - H⁺), **HRMS (ESI)** m/z 172.0974 ([M - H⁺]), calc. for $[C_8H_{15}NO_3 - H^+]$ 172.0979.

Amide 24: Ethyl 2-(hexylamino)-2-oxoacetate

Following the above general procedure with ethyl glyoxylate (ca. 50% soln. in toluene) (19.8 μ L, 0.10 mmol, 1 equiv) and n-hexylamine (19.8 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **24** (18.9 mg, 94%) as a pale yellow oil.

¹H NMR (300 MHz, CDCl₃) δ 7.13 (s, 1H), 4.32 (q, J = 7.1 Hz, 2H), 3.31 (dd, J = 6.9, 3.5 Hz, 2H), 1.57 – 1.50 (m, 2H), 1.37 – 1.22 (m, 9H), 0.86 (t, J = 6.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.84, 156.48, 63.09, 39.88, 31.31, 29.03, 26.41, 24.78, 22.43, 13.91.

LRMS (ESI) $m/z 202.1 (M + H^{+})$ **HRMS (ESI)** $m/z 212.1440 ([M + H^{+}])$, calc. for $[C_{10}H_{19}NO_3 + H^{+}] 202.1438$.

Amide 25: Ethyl 2-oxo-2-(tert-pentylamino)acetate

Following the above general procedure with ethyl glyoxylate (ca. 50% soln. in toluene) (19.8 μ L, 0.10 mmol, 1 equiv) and tert-pentylamine (17.5 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **25** (12.7 mg, 68%) as a pale yellow oil.

¹H NMR (**300 MHz, CDCl**₃) δ 6.88 (s, 1H), 4.31 (q, J = 7.1 Hz, 2H), 1.75 (q, J = 7.5 Hz, 2H), 1.40 – 1.34 (m, 9H), 0.86 (t, J = 7.5 Hz, 3H). ¹³C NMR (**75 MHz, CDCl**₃) δ 161.40, 155.44, 63.08, 54.71, 32.54, 25.74, 13.92, 8.24.

LRMS (ESI) m/z 187.9 (M + H⁺) **HRMS (ESI)** m/z 188.1274 ([M + H⁺]), calc. for [C₉H₁₇NO₃ + H⁺] 188.1281.

Amide 26: Ethyl 2-((3s,5s,7s)-adamantan-1-ylamino)-2-oxoacetate

Following the above general procedure with ethyl glyoxylate (ca. 50% soln. in toluene) (19.8 μ L, 0.10 mmol, 1 equiv) and 1-adamantylamine (22.7 mg, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **26** (17.8 mg, 71%) as a colourless oil.

¹H NMR (300 MHz, CDCl₃) δ 6.83 (s, 1H), 4.29 (q, J = 7.1 Hz, 2H), 2.09 – 2.01 (m, 9H), 1.69 – 1.67 (m, 6H), 1.36 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.45, 155.10, 63.00, 52.45, 40.88, 36.10, 29.24, 13.89.

LRMS (ESI) $m/z 252.1 (M + H^+)$ **HRMS (ESI)** $m/z 252.1604 ([M + H^+])$, calc. for $[C_{14}H_{21}NO_3 + H^+] 252.1594$.

Amide 27: Ethyl 2-(isobutylamino)-2-oxoacetate

Following the above general procedure with ethyl glyoxylate (ca. 50% soln. in toluene) (19.8 μ L, 0.10 mmol, 1 equiv) and isobutylamine (14.8 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **27** (14.2 mg, 82%) as a colourless oil.

¹H NMR (300 MHz, CDCl₃) δ 7.16 (s, 1H), 4.34 (q, J = 7.1 Hz, 2H), 3.16 (t, J = 6.6 Hz, 2H), 1.88 – 1.79 (m, 1H), 1.38 (t, J = 7.1 Hz, 3H), 0.93 (d, J = 6.7 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 160.91, 156.59, 63.15, 47.12, 28.28, 19.97, 13.94.

LRMS (ESI) m/z 196.1 (M + Na⁺) **HRMS (ESI)** m/z 196.0942 ([M + Na⁺]), calc. for [C₈H₁₅NO₃ + Na⁺] 196.0944.

Amide 28: Ethyl 2-(isopentylamino)-2-oxoacetate

Following the above general procedure with ethyl glyoxylate (ca. 50% soln. in toluene) (19.8 μ L, 0.10 mmol, 1 equiv) and isopentylamine (17.4 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **28** (15.6 mg, 85%) as a pale yellow oil.

¹**H** NMR (300 MHz, CDCl₃) δ 7.08 (s, 1H), 4.33 (q, *J* = 7.1 Hz, 2H), 3.34 (dd, *J* = 14.1, 6.7 Hz, 2H), 1.67 – 1.58 (m, 1H), 1.48 – 1.41 (m, 2H), 1.37 (t, *J* = 7.1 Hz, 3H), 0.91 (d, *J* = 6.6 Hz, 6H).¹³C NMR (75 MHz, CDCl₃) δ 160.83, 156.46, 63.11, 38.16, 37.88, 25.69, 22.30, 13.93.

LRMS (ESI) m/z 188.0 (M + H⁺) **HRMS (ESI)** m/z 188.1279 ([M + H⁺]), calc. for [C₉H₁₇NO₃ + H⁺] 188.1281.

Amide 29: Ethyl 2-((cyclohexylmethyl)amino)-2-oxoacetate

Following the above general procedure with ethyl glyoxylate (ca. 50% soln. in toluene) (19.8 μ L, 0.10 mmol, 1 equiv) and cyclohexylmethylamine (19.5 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **29** (16.6 mg, 78%) as a colourless oil.

¹**H** NMR (300 MHz, CDCl₃) δ 7.16 (s, 1H), 4.33 (q, J = 7.3 Hz, 2H), 3.17 (t, J = 6.6 Hz, 2H), 1.74 – 1.63 (m, 5H), 1.57 – 1.47 (m, 1H), 1.37 (t, J = 7.1 Hz, 3H), 1.26 – 1.16 (m, 3H), 1.00 – 0.89 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 160.91, 156.57, 63.13, 45.99, 37.59, 30.65, 26.19, 25.64, 13.94.

LRMS (ESI) m/z 212.0 (M - H⁺) **HRMS (ESI)** m/z 212.1293 ([M - H⁺]), calc. for $[C_{11}H_{19}NO_3 - H^+]$ 212.1292.

Amide **30**: Ethyl 2-oxo-2-((4-phenylbutyl)amino)acetate

Following the above general procedure with ethyl glyoxylate (ca. 50% soln. in toluene) (19.8 μ L, 0.10 mmol, 1 equiv) and 4-phenylbutylamine (23.7 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **30** (23.2 mg, 93%) as a pale yellow oil.

¹**H** NMR (300 MHz, CDCl₃) δ 7.27 (dd, J = 9.8, 4.5 Hz, 2H), 7.22 – 7.14 (m, 3H), 4.33 (q, J = 7.1 Hz, 2H), 3.35 (q, J = 6.7 Hz, 2H), 2.64 (t, J = 7.2 Hz, 2H), 1.66 – 1.54 (m, 4H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.76, 156.51, 141.74, 128.32, 125.84, 63.11, 39.67, 35.30, 28.62, 28.44, 13.92.

LRMS (ESI) $m/z \ 250.1 \ (M + H^+)$ **HRMS (ESI)** $m/z \ 250.1444 \ ([M + H^+]), \ calc. for [C_{14}H_{19}NO_3 + H^+] \ 250.1438.$

Amide 31: Ethyl 2-oxo-2-(phenethylamino)acetate

Following the above general procedure with ethyl glyoxylate (ca. 50% soln. in toluene) (19.8 μ L, 0.10 mmol, 1 equiv) and phenethylamine (18.9 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **31** (20.1 mg, 91%) as a pale yellow oil.

¹**H** NMR (300 MHz, CDCl₃) δ 7.32 (dd, J = 7.4, 4.5 Hz, 2H), 7.25 – 7.18 (m, 3H), 4.32 (q, J = 7.1 Hz, 2H), 3.60 (dd, J = 13.4, 7.0 Hz, 2H), 2.87 (t, J = 7.1 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.61, 156.50, 138.05, 128.72, 128.63, 126.72, 63.13, 40.95, 35.18, 13.91.

LRMS (ESI) m/z 222.1 (M + H⁺) **HRMS (ESI)** m/z 222.1127 ([M + H⁺]), calc. for $[C_{12}H_{15}NO_3 + H^+]$ 222.1125.

Amide 32: Ethyl 2-(benzylamino)-2-oxoacetate

Following the above general procedure with ethyl glyoxylate (ca. 50% soln. in toluene) (19.8 μ L, 0.10 mmol, 1 equiv) and benzylamine (16.4 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **32** (19.0 mg, 92%) as a pale yellow oil.

¹H NMR (300 MHz, CDCl₃) δ 7.44 (s, 1H), 7.37 – 7.28 (m, 5H), 4.51 (d, J = 6.1 Hz, 2H), 4.33 (q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.57, 156.44, 136.68, 128.78, 127.92, 127.88, 63.21, 43.87, 13.90.

LRMS (ESI) m/z 207.9 (M + H⁺) **HRMS (ESI)** m/z 208.0968 ([M + H⁺]), calc. for $[C_{11}H_{13}NO_3 + H^+]$ 208.0968.

Amide 33: Ethyl 2-((benzo[d][1,3]dioxol-5-ylmethyl)amino)-2-oxoacetate

Following the above general procedure with ethyl glyoxylate (ca. 50% soln. in toluene) (19.8 μ L, 0.10 mmol, 1 equiv) and piperonylamine (18.7 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **33** (17.8 mg, 71%) as a yellow solid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.35 (s, 1H), 6.78 – 6.75 (m, 3H), 5.94 (s, 2H), 4.41 (d, J = 6.1 Hz, 2H), 4.34 (q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.60, 156.36, 148.02, 147.34, 130.49, 121.44, 108.55, 108.39, 101.16, 63.26, 43.76, 13.94.

LRMS (ESI) m/z 251.9 (M + H⁺) **HRMS (ESI)** m/z 252.0872 ([M + H⁺]), calc. for $[C_{12}H_{13}NO_5 + H^+]$ 252.0866.

Amide 34: Ethyl 2-((4-methoxybenzyl)amino)-2-oxoacetate

Following the above general procedure with ethyl glyoxylate (ca. 50% soln. in toluene) (19.8 μ L, 0.10 mmol, 1 equiv) and 4-methoxybenzylamine (19.6 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **34** (21.3 mg, 90%) as a pale yellow solid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.35 (s, 1H), 7.22 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 4.44 (d, J = 6.0 Hz, 2H), 4.33 (q, J = 7.1 Hz, 2H), 3.79 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.63, 156.33, 129.37, 128.72, 114.17, 113.69, 63.19, 55.26, 43.39, 13.92.

LRMS (ESI) $m/z 236.1 (M - H^+)$ **HRMS (ESI)** $m/z 236.0928 ([M - H^+])$, calc. for $[C_{12}H_{15}NO_4 - H^+] 236.0928$.

Amide 35: Ethyl 2-oxo-2-(phenylamino)acetate

Following the above general procedure with ethyl glyoxylate (ca. 50% soln. in toluene) (19.8 μ L, 0.10 mmol, 1 equiv) and aniline (13.7 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **35** (16.0 mg, 83%) as a brown oil.

¹H NMR (**300** MHz, CDCl₃) δ 8.89 (s, 1H), 7.64 (d, J = 7.6 Hz, 2H), 7.40 – 7.35 (m, 2H), 7.21 – 7.16 (m, 1H), 4.42 (q, J = 7.2 Hz, 2H), 1.43 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.99, 153.85, 136.30, 129.20, 125.49, 119.79, 63.71, 13.96.

LRMS (ESI) m/z 192.1 (M - H⁺) **HRMS (ESI)** m/z 192.0664 ([M - H⁺]), calc. for [C₁₀H₁₁NO₃ - H⁺] 192.0666.

Amide 36: Ethyl 2-((3,4-dimethylphenyl)amino)-2-oxoacetate

Following the above general procedure with ethyl glyoxylate (ca. 50% soln. in toluene) (19.8 μ L, 0.10 mmol, 1 equiv) and 3,4-dimethylaniline (18.2 mg, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **36** (20.3 mg, 92%) as a dark yellow oil.

¹**H** NMR (300 MHz, CDCl₃) δ 8.80 (s, 1H), 7.39 – 7.37 (m, 2H), 7.13 – 7.10 (m, 1H), 4.40 (q, *J* = 7.1 Hz, 2H), 2.26 (s, 3H), 2.23 (s, 3H), 1.42 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.11, 153.68, 137.49, 134.02, 133.98, 130.14, 120.99, 117.27, 63.57, 19.84, 19.23, 13.95.

LRMS (ESI) m/z 222.1 (M + H⁺) **HRMS (ESI)** m/z 222.1133 ([M + H⁺]), calc. for $[C_{12}H_{15}NO_3 + H^+]$ 222.1125.

Amide 37: 4-cyano-N,N-dipropylbenzamide

Following the above general procedure with 4-cyanobenzaldehyde (13.1 mg, 0.10 mmol, 1 equiv) and N,N-dipropylamine (20.5 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **37** (12.7 mg, 55%) as a yellow oil.

¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, J = 7.6 Hz, 2H), 7.45 (d, J = 7.7 Hz, 2H), 3.45 (t, J = 7.3 Hz, 2H), 3.09 (t, J = 7.3 Hz, 2H), 1.93 (s, 1H), 1.68 (dd, J = 14.5, 7.3 Hz, 2H), 1.51 (dd, J = 14.2, 7.1 Hz, 2H), 0.97 (t, J = 7.1 Hz, 3H), 0.74 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 169.67, 141.65, 132.34, 127.19, 118.17, 112.91, 50.59, 46.38, 21.87, 20.61, 11.35, 10.97.

LRMS (ESI) m/z 231.1 (M + H⁺) **HRMS (ESI)** m/z 231.1499 ([M + H⁺]), calc. for $[C_{14}H_{18}N_2O + H^+]$ 231.1492.

Amide 38: (S)-N-(1-(naphthalen-2-yl)ethyl)-4-nitrobenzamide

Following the above general procedure with 4nitrobenzaldehyde (15.1 mg, 0.10 mmol, 1 equiv) and (S)-(-)-1-(2-naphthyl)ethylamine (25.7 mg, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **38** (19.8 mg, 62%) as a pale yellow solid.

¹H NMR (300 MHz, CDCl₃) δ 8.19 (d, J = 8.8 Hz, 2H), 7.91 – 7.80 (m, 6H), 7.47 (dd, J = 6.1, 3.2 Hz, 3H), 6.69 (s, 1H), 5.50 – 5.41 (m, 1H), 1.69 (d, J = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 164.61, 149.52, 140.00, 139.75, 133.30, 132.83, 128.74, 128.13, 127.85, 127.64, 126.43, 126.15, 124.78, 124.56, 123.71, 49.80, 21.37.

LRMS (ESI) m/z 343.1 (M + Na⁺) **HRMS (ESI)** m/z 343.1060 ([M + Na⁺]), calc. for [C₁₉H₁₆N₂O₃ + Na⁺] 343.1053.

HPLC analysis: Chiralcel OD-H (Hex/IPA = 70/30, 1.0 mL/min, 254 nm, 23°C), 14.63 min, 65.99 min (major), 98% *ee*.

Amide 39: (R)-4-nitro-N-(1-phenylethyl)benzamide

Following the above general procedure with 4nitrobenzaldehyde (15.1 mg, 0.10 mmol, 1 equiv) and (R)-(+)alpha-methylbenzylamine (19.3 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **39** (19.7 mg, 73%) as an off-white solid.

¹**H** NMR (300 MHz, CDCl₃) δ 8.23 (d, J = 8.4 Hz, 2H), 7.91 (d, J = 8.7 Hz, 2H), 7.38 – 7.27 (m, 5H), 6.61 (s, 1H), 5.36 – 5.26 (m, 1H), 1.62 (d, J = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 164.57, 149.51, 142.45, 140.10, 128.84, 128.14, 127.73, 126.21, 123.72, 49.73, 21.50.

LRMS (ESI) m/z 292.9 (M + Na⁺) **HRMS (ESI)** m/z 293.0911 ([M + Na⁺]), calc. for $[C_{15}H_{14}N_2O_3 + Na^+]$ 293.0897.

HPLC analysis: Chiralcel OD-H (Hex/IPA = 80/20, 1.0 mL/min, 254 nm, 23°C), 17.66 min, 20.94 min (major), 98% *ee*.

Amide 40: (R)-ethyl 2-oxo-2-((1-phenylethyl)amino)acetate

Following the above general procedure with ethyl glyoxylate (ca. 50% soln. in toluene) (19.8 μ L, 0.10 mmol, 1 equiv) and (R)-(+)-alpha-methylbenzylamine (19.3 μ L, 0.15 mmol, 1.5 equiv), the crude reaction mixture was purified by flash chromatography to provide amide **40** (18.8 mg, 85%) as a colourless oil.

¹**H** NMR (300 MHz, CDCl₃) δ 7.38 – 7.27 (m, 5H), 5.19 – 5.09 (m, 1H), 4.33 (q, *J* = 7.1 Hz, 2H), 1.56 (d, *J* = 6.9 Hz, 3H), 1.37 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.78, 155.57, 141.67, 128.78, 127.78, 126.23, 63.22, 49.40, 21.22, 13.92.

LRMS (ESI) $m/z 220.0 (M - H^+)$ **HRMS (ESI)** $m/z 220.0981 ([M - H^+])$, calc. for $[C_{12}H_{15}NO_3 - H^+] 220.0979$.

HPLC analysis: Chiralcel OD-H (Hex/IPA = 80/20, 1.0 mL/min, 210 nm, 23°C), 6.30 min (major), 7.67 min, 97% *ee*.

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for RSC Advances This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for RSC Advances This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2012

6. Chiral HPLC Chromatograms for Amides 38 - 40

Amide 38: (S)-N-(1-(naphthalen-2-yl)ethyl)-4-nitrobenzamide

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %
1	14.63	n.a.	4.386	5.897	1.13
2	65.99	n.a.	96.304	516.844	98.87
Total:			100.690	522.741	100.00

Amide 39: (R)-4-nitro-N-(1-phenylethyl)benzamide

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %
1	17.66	n.a.	1.704	1.411	1.03
2	20.94	n.a.	62.169	136.083	98.97
Total:			63.873	137.493	100.00

Amide 40: (R)-ethyl 2-oxo-2-((1-phenylethyl)amino)acetate

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %
1	6.30	n.a.	1661.561	600.702	98.59
2	7.67	n.a.	18.418	8.604	1.41
Total:			1679.979	609.306	100.00