
Electronic supplementary information:

Single Crystal $\alpha\text{-Fe}_2O_3$ with Exposed {104} Facets for High Performance Gas Sensor Applications

Xianghong Liu, ¹ Jun Zhang, ¹ Shihua, ¹ Dongjiang Yang, ² Porun Liu, ² Haimin Zhang, ² Wu Shurong Wang, ¹, * Xiangdong Yao, ³ Guangshan Zhu, ³ and Huijun Zhao ², *

Fig. S1. EDS analysis of an individual rhombohedral α -Fe₂O₃ crystal.

¹ Department of Chemistry, TKL of Metal- and Molecule-Based Material Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University, Tianjin 300071, P. R. China

² Centre for Clean Environment and Energy, and Griffith School of Environment Gold Coast Campus, Griffith University, QLD 4222, Australia

³ Queensland Micro and Nanotechnology Centre, Nathan campus, Griffith University, QLD 4111, Australia

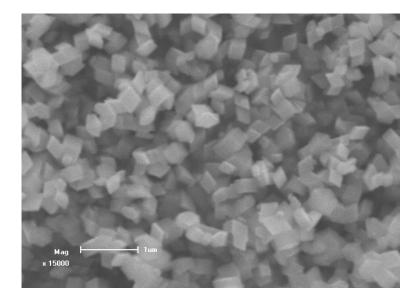


Fig. S2. SEM image of the α -Fe₂O₃ products prepared with 3.2 g formamide, showing that all the particles have a uniform rhombohedral morphology.

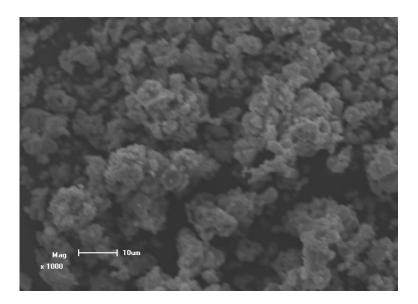


Fig. S3. SEM image of the commercial $\alpha\text{-Fe}_2O_3$ powder.