Electronic Supplementary Information

Single-component fuel cells fabricated by Spark Plasma Sintering

Marian Stingaciu,^a Bin Zhu,^{*b} Manish Singh^c and Mats Johnsson^a

^aDepartment of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden; ^bDepartment of Energy Technology, Royal Institute of Technology, KTH Stockholm, SE- 10044 Sweden; *E-mail: <u>bin.zhu@energy.kth.se</u>* ^cGETT Fuel Cell AB, Stora Nygatan 33, S-10314, Stockholm, Sweden;

Preparation of electron conducting material

For the preparation of electron conducting material the following chemicals, all from Sigma-Aldrich Company were used:

6.75 g of $Ce(NO_3)_3 \cdot 6H_20$ 0.75 g of $Sm(NO_3)_3 \cdot 6H_20$ 1.25 g of $Zn(NO_3)_2 \cdot 6H_20$ 1.00 g of $Sr(NO_3)_2$ 1.575 g of Li_2CO_3 8.25 g of $NiCO_3 \cdot 2Ni(OH)_2 \cdot xH_2O$ 2.525 g of $CuCO_3 \cdot Cu(OH)_2$ 0.0125 g of $SrCO_3$

Solid state reaction method has been used with one time intermediate grindings at 800 °C for 4 h.

Preparation of ionic conducting material

For the preparation of ionic conducting material the following chemicals, all from Sigma-Aldrich Company were used:

23.2 g of $Sm(N0_3)_3 \cdot 6H_20$

87 g of $Ce(NO_3)_3 \cdot 6H_20$

The co-precipitation method was used. The above amounts of $Sm(NO_3)_3 \cdot 6H_2O$, $Ce(NO_3)_3 \cdot 6H_2O$, $NaCO_3$ were mixed in 5L of H_2O and in parallel above amount of $NaCO_3$ was mixed in 1 L of H_2O , then 1 L of Na_2CO_3 solution was added slowly (with a flow rate of 100 ml min) into the solution under vigorous stirring to form white precipitation. After stirring for 3 h, the precipitate was filtered and dried at 100 °C for 20h to obtain the final ionic conducting material.

Spark Plasma Sintering (SPS) principle

A schematic of the SPS setup is shown in Fig5. The SPS method has been used in this work for fabrication of single-component fuel cells. An amount of ~0.80g single component powder has been used for each fabricated cell. The powder (yellow color) was loaded into a 20 mm diameter graphite die. Both sides of the loaded powder were covered by silver coated meshes which play the role of current collectors (blue colour). To obtain a good flatness of the sintered samples, stainless steel plates have been used as separators between the meshes and graphite punches. The SPS chamber was then evacuated until 4 Pa have been reached. The sintering was performed using a sequence of 12:2 on/off pulses (12 pulses of DC current followed by 2 set of time periods with no current, each period being 6ms long). A heating rate of 50 $^{\circ}$ C / min has been used for all the fabricated cells. The applied pressure was adjusted during heating up to the desired plateau temperature and kept at a constant value for 5 minutes.

Fig.5 Schematics of the SPS method used for fabrication of single-component fuel cells.

Cross-section of ionic conducting material

Cross section SEM micrographs of a fuel cell sintered at 550 °C are shown in Fig.6 The materials consist of three parts; (*i*) a homogeneous layer in a mixture of electronic- and ionic conductivity material surrounded by (*ii*) top and (*iii*) lower layers consisting of coated silver meshes used as current collectors. It is clear from the micrographs that the samarium doped CeO₂/Na₂CO₃ - Li_{2x}Zn₁. $_{x}O/NiO/SrO/CuO/$ sintered composite possess a structure with each of the current collectors well

embedded into the single component layer as required for a good current collector path.

Fig.6 Cross-section SEM images of (a) a single-component fuel cell fabricated at 550 °C.

(b) Detail of the interface between the current collector (Ag net) and the samarium doped $CeO_2/Na_2CO_3 - Li_{2x}Zn_{1-x}O/NiO/SrO/CuO/\ composite$