Supplementary data

The following results and discussions are for the low-temperature (500°C) processed phosphors.

Sup-Figure 1: Room temperature XRD patterns of KCaBO₃:Eu³⁺ sample treated at 500 °C.

Note: The diffraction pattern of the phosphor prepared at 500 °C shows mixed phase and some of the XRD peaks coincide with the standard monoclinic phase KCaBO₃ (an analogous of LiBaBO₃; JCPDS card no. 00-023-0472). Presence of Diffraction peaks related to triclinic H₃BO₃ (JCPDS card no. 73-2158) and monoclinic Eu₂O₃ (JCPDS card no. 34-0072) which suggests the incomplete reaction at low temperature annealing.

Sup-Figure 2: Room temperature (a) FTIR (b) ¹¹B-MAS NMR chemical shift and (c) EDX spectra of KCaBO₃: Eu^{3+} sample treated at 500 °C.

Note: The FTIR spectrum (sup-Fig 2a) is rich in transmission dips of different vibrational energies of various B-O bonds and shows strong annealing temperature dependence. The broad transmission dips at 3430 cm⁻¹ and 1630 cm⁻¹ corresponds to the O–H stretching vibrations, while the broad band at ~2100cm⁻¹, appeared only at 500 °C temperature, has been attributed to water related symmetric hydrogen bonds.¹⁷⁻¹⁹ However, the broad nature of spectra in the spectral region between 2000 and 3500 cm⁻¹ got widened in the sample heated at 500 °C due to the co-existence of residual KCl and CaCl₂ in the crystal lattice and their transmission decreases with the increase of annealing temperature.²⁰ The asymmetric stretching vibrations of (BO₃)⁻³ units is observed around 1149 cm⁻¹. The sharp IR bands at 707 cm⁻¹ could be attributed to the bending

vibration of triangular BO₃ units and the bands around 480 cm⁻¹ is of di-borate group.^{17,18} Furthermore, the IR absorptions due to boron in a tetrahedral oxygen coordination were also found in the between 900 and 1100 cm^{-1} in the sample synthesized at 500 °C, suggesting the existence of the mixed phase.

The basic NMR pattern (sup-Fig 2b) of the sample annealed at 500 °C is consists of a sharp peak (-18ppm) superimposed over a broad peak (-6ppm), which appears as shoulders symmetrically placed on either side of the sharp peak. The broad peak can be attributed to the trigonally coordinated BO₃ structural units and the sharp peak to the tetrahedrally coordinated BO₄ structural units as in most of the borate containers, boron exists in both BO₃ and BO₄ structural units. As ¹¹B is a quadrupolar nuclei (I = 3/2), due to the lack of cubic symmetry, boron nuclei in BO₃ structural units suffers from significant quadrupolar interaction resulting in a broad resonance peak. However, in this case the spectrum shows negligible quadrupolar interaction and hence gives a sharp peak. Moreover, a distinct difference in peak positions and shapes can be seen in the spectra at higher temperature annealed samples. (sup-Fig 2b)

The qualitative EDX microanalysis (sup-Fig 2c) of the chemical composition of KCaBO₃: Eu^{3+} annealed at high temperature is performed indicating that the major components of the resultant phosphor are K, Ca, B, O and Eu elements. Prominent trace of Cl, from initial chemical ingredients is also witnessed.

Sup-Figure 3: Room temperature (a) emission spectra (λ_{ex} = 393, 404 & 532nm) and (b) excitation (λ_{em} =616nm) of the KCaBO₃:Eu³⁺ powders annealed at 500 °C temperature.

Note: The PL spectra show red-orange emission even to the naked eye (sup-Fig 3a (inset)). The spectrum is dominated by a strong featureless violet-blue emission band (about 80 nm FWHM) at 429 nm, when excited with wavelength 404 nm. Essentially this emission band is not part of

typical Eu^{3+} emission transitions. The broad emission at 429 nm can be identified as a result of Eu^{2+} , where the emission is related to the transition from lowest (4f⁶)5d excited state ⁶P_{7/2} to the ⁸S_{7/2} ground state of Eu^{2+} ion and corresponding discussion can be found in the main text.

The excitation spectra (sup-Fig 3b) show rich spectral lines spanning 350 to 500 nm covering all commercially available UV/blue/violet LEDs to improve the color rendering property for W-LED. These characteristic transitions are from the ground ${}^{7}F_{0}$ and ${}^{7}F_{1}$ (thermally populated) states to various excited states of Eu³⁺.

Sup-Figure 4: Confocal (a) image light (white light illuminated dark field mode) and (b) PL (λ_{ex} = 404nm) images recorded using high-resolution images for KCaBO₃:Eu³⁺ phosphors annealed at 500°C. (Colors are not to be scaled).The PL spatial scans (4µm step) monitored at (c) 476nm and (d) 612nm PL peaks respectively (see text).

Note: To know the coexistence of Eu^{3+}/Eu^{2+} photoluminescence and its microscopic distribution within the 500 °C annealed phosphor, the PL spatial mapping has been performed over 200×200 μm^2 . Unlike 700 °C annealed phosphor, the red photoluminescence (612nm), related to Eu^{3+} is found to be equally intense to the photoluminescence related to Eu^{2+} (476nm) (sup-Fig. 4e).Moreover, the 500°C annealed phosphor is having almost uniform distribution of Eu^{2+}/Eu^{3+} emission locations throughout the sample (Fig.4c and Fig. 4d).

Supl-Figure 5: Diamond drawing of the monoclinic KCaBO₃ from the LeBail fitting procedure of the powder X-ray diffraction pattern of the sample annealed at 900°C (see Fig1 from the mail text).

Note : It is found that the structure can be constructed from a stack of [KBO] and [CaO] layers along the [100] direction, distributed alternately. In the [KBO] layers, the isolated $[BO_3]^{3-}$ anionic groups distribute along two directions, some of them run parallel with the [011]

direction, while the others run parallel to the [011] direction. Those KO_5 polyhedra share corners with each other via bridging-oxygen atoms, and locate in the intersections of [011] and [0-11] as a bridging role, joining the adjacent BO₃ triangles. In the [CaO] layers, the Ca atoms are coordinated with seven oxygen atoms, forming mono-capped distorted trigonal prisms, sharing edges with each other.