This journal is © The Royal Society of Chemistry [year]

Supporting information

Clean synthesis of *p*-nitrotoluene from crystalline *p*nitrobenzylbromide with zero organic discharge

Milan Dinda,^a Manoj K. Agrawal,^{a,b} Mahesh R. Gandhi,^a Sumesh C. Upadhyay,^a Subbarayappa Adimurthy,^a Supratim Chakraborty,^a and Pushpito K. Ghosh^{*,a}

^aCentral Salt and Marine Chemicals Research Institute, Council of Scientific & Industrial Research, G. B. Marg, Bhavnagar –364 002, India

^b Present Address: Generic Division, Lupin Research Park, Survey No. 46/47A Nande Village, Mulshi Taluka, Pune 411042, Maharashtra, India

*E-mail: pkghosh@csmcri.org; Fax: +91-278-2567562

Warning: <u>p</u>-Nitrobenzyl bromide is a skin irritant and due care must be taken during handling and work *up*.

Analytical Data

GC-MS Data

Fig S1. GC-MS of 3.0551 g (22.3 mmol) PNT and 2.4084 g (11.15 mmol) PNBBr (2:1, [PNT]:[PNBBr]) in 20 mL EDC for quantification of yields taking into account response factor

This journal is © The Royal Society of Chemistry [year]

Fig S2. GC-MS of reaction mixture upon reaction with NBS (5 mmol substrate; 3:1 molar ratio of substrate to reagent) at 80°C under illumination with 100 W tungsten lamp

Fig. S3. GC-MS of reaction mixture upon reaction with *BR-S* (5 mmol substrate; 3:1 molar ratio of substrate to reagent) at 80°C in the absence of light

This journal is © The Royal Society of Chemistry [year]

Fig. S4. The figure shows the GC-MS of the reaction mixture of Batch 1, Table 1. When corrected for response factor using the data of Figure S1, the observed peak areas of PNT and PNBBr tallied well with the values computed for a 1.9:1.1 molar ratio of PNT to PNBBr expected for quantitative formation of product in Batch 1.

Fig. S5.1. GC-MS of crystallized product from Batch 1

Fig. S5.4. GC-MS of crystallized product from Batch 4

Fig. S5.5. GC-MS of crystallized product from Batch 5

This journal is © The Royal Society of Chemistry [year]

NaBH₄ reduction of the mother liquor after 8th batch:

GC-MS Data:

This journal is © The Royal Society of Chemistry [year]

Chromatogram MD 9M7 C:\GCMSsolution\Data\Project1\ANALYTICAL SCINCE\MD\MD 9M8_RTX 5_281111_08.qgd

Figure S6.5 (Table S3, Entry 5)

Fig. S7.1. Mother liquor of Table 1 before debromination with NaBH₄

Fig. S7.2. Mother liquor of Table 1 after debromination with NaBH₄

Fig. S8. GC-MS of composite of the isolated products from Batches 1-8, Table 1.

This journal is © The Royal Society of Chemistry [year]

NMR (¹H; ¹³C NMR) and IR data of PNBBr

1) *p* - nitrobenzyl bromide (PNBBr) (Table 1, Entry 1, Fig. S5.1)

¹H NMR (CDCl₃-500 MHz): δ 8.21-8.23 (2H, d, J=8.5); 7.58-7.6 (2H, d, J=8.5); 4.55 (2H, S).

¹³C NMR (CDCl₃-500 MHz): δ 147.7, 144.8, 129.9 (2C), 124.0 (2C), 31.0

This journal is © The Royal Society of Chemistry [year]

IR data

V_{max} (KBr): 3051, 2840, 2378, 1604, 1534, 1344, 1224, 1099, 1011, 874, 798, 692, 592 cm⁻¹

NMR (¹H ; ¹³C NMR) data of PNBBr₂

2) 1-(dibromomethyl)-4-nitrobenzene

¹H NMR (CDCl₃-200 MHz): δ 8.24-8.2 (2H, d, J=8.6); 7.76-7.72 (2H, d, J=8.4); 6.664 (1H, S).

¹³C NMR (CDCl₃-200 MHz): δ 148.3, 147.9, 127.9 (2C), 124.1 (2C), 38.6

Note: Minor peaks are ascribed to PNT and PNBBr impurities

This journal is © The Royal Society of Chemistry [year]

Entry	PNT	PNBBr	CCl ₄ /mL	Solid	PNBBr purity
	g/mmol	g/mmol		isolated/g	(GC-Area %)
1.	1.0/7.23	0.788/3.64	1.8	1.78	33%
2.	1.0/7.23	0.788/3.64	2.7	1.78	"
3.	1.0/7.23	0.788/3.64	3.6	1.78	>>
4.	1.0/7.23	0.788/3.64	4.5	0.97	>>
5.	1.0/7.23	0.788/3.64	5.4	0.86	"
6.	1.0/7.23	0.788/3.64	6.3	0.82	"
7.	1.0/7.23	0.788/3.64	7.2	0.87	47.6
8.	1.0/7.23	0.788/3.64	8.1	0.73	53.8
9.	1.0/7.23	0.788/3.64	9.0	0.52	65.6
10.	20/145.9	15.76/72.9	162	15.6	64.6

Table S1. Crystallization studies of 2:1 PNT/PNBBr in CCl₄

This journal is © The Royal Society of Chemistry [year]

Batch	PNT	Carbon	Br/mole	98%	PNBBr	Purity
No.	$K_{\alpha}/(mol)$	tetrachloride		H ₂ SO ₄ Kg	Kg/(mol)	(GC
	Kg/ (III01)	(L)		(mol)		area
						%)
				0 1 1 4		07.1
1	0 900 (6 56)	48	2 189	(1 14)	0 364 (1 68)	97.1
-				(111.)	0.201 (1.00)	
		Recycled		0.107		95 7
2	0.231(1.68)	mother liquor.	1.87	(1.07)	0.368 (1.7)	55.7
		Recycled		0.107		
3	0.233 (1.70)	mother liquor.	1.89	(1.07)	0.369 (1.7)	99.5
	, ,	1		× ,		
		Recycled		0.107		100
4	0.234 (1.70)	mother liquor.	1.9	(1.07)	0.373 (1.72)	
		Recycled		0.095		00.5
5	0.236 (1.72)	mother liquor.	1.92	(0.95)	0.371 (1.71)	98.5
		D 1. 1		0.107		
6	0.225 (1.71)	Recycled	1.01	(1.07)	0.411.(1.0)	96.3
0	0.233 (1.71)	mouler inquor.	1.91	(1.07)	0.411 (1.9)	
		Recycled		0.107		100
7	0.260 (1.90)	mother liquor.	2.11	(1.07)	0.360 (1.66)	100
		Recycled		0.107		
8	0.228 (1.66)	mother liquor	1.85	(1.07)	0.330(1.52)	98.8
0	0.228 (1.00)	mouler nquor.	1.05	(1.07)	0.550 (1.52)	
		4.5L Carbon				98.2
		tetrachloride		0.851	2.947	
Total/Av	2.559 (18.63)	recovered	15.63	(8.51)	(13.59)	

Syntheses details pertaining to Table S2

0.9 kg (6.56 mol) of PNT was dissolved in 4.8 L of CCl₄ and added into a 10 L capacity glass reactor fitted with addition funnel and reflux condenser/distillation assembly. 1.09 L of brominating agent containing 2.189 mole active Br was added. The contents were heated to

This journal is © The Royal Society of Chemistry [year]

reflux temperature and illuminated externally with 3 x 100 W tungsten filament bulbs. 112 g of 98% H₂SO₄ (1.14 mol) in 0.6 L of water was taken in the addition funnel and the acid was added over a period of 2 h. (Caution: If the reaction mass develops brown color stop the addition and allow color to disappear before continuing addition of acid.) Reflux conditions were maintained for an additional 1 h. The reaction mass was allowed to cool to ca. 40°C temperature and the contents discharged into a separating column. The organic phase was poured into a suitable wide mouth glass vessel and kept for crystallization in a deep freezer after inserting 3 broomsticks to promote crystallization. The organic phase attained a temperature of -15°C and was removed after 12 hours. Crystal formation was seen. The contents were allowed to warm up to 0-4°C to re-dissolve PNT which had co-crystallized with the product. The lumps of crystals were broken up and the contents centrifuged in a continuous centrifuge, which operation required barely a couple of minutes. The collected PNBBr weighed 0.364 kg (1.68 mol) and exhibited 97.1% (GC area %) purity. The mother liquor was placed back into the glass reactor. Fresh 0.231 kg (1.68 mol) of PNT, equivalent to the amount of PNBBr recovered in the first batch, was added and brominating reagent was taken at the mole ratio as shown in Table S2 below. The reaction was repeated in the same manner as above but towards the end of the reaction 0.6 L of CCl₄ was collected by changing over from reflux mode to distillation mode and kept for chilling. Cold crystallization was repeated to obtain PNBBr from the reaction mass. The crude PNBBr was washed in the centrifuge with the chilled CCl₄ and centrifuged. The mother liquor and washings were once again recycled. Eight batches were carried out in all and the data on PNBBr yield and purity for each batch and also the total yield and average purity are provided in the table S2. After the 8th batch, CCl₄ was recovered from the mother liquor and the residue was then subjected to vacuum distillation. For this purpose, the residue was first melted and purged with

This journal is © The Royal Society of Chemistry [year]

nitrogen. Thereafter the temperature was raised to 140-155°C and the PNT distilled over at the reduced pressure of 10-40 mm Hg. The amount of PNT recovered was 0.514 kg (3.75 mol).

Table S3.Optimization of NaBH4 concentration for the reduction of mother liquor obtained in Batch 8,Table 1 of manuscript

Entry	NaBH ₄ taken (with respect to the amount of	% PNBBr ₂ (<u>1</u>)	% PNBBr	% PNT
No.	$PNBBr_2(\underline{1})$ present in the reaction mixture)			
1.	0 equiv.	80.72	19.23	0.0
2.	2 equiv.	58.46	41.56	0.0
3.	4 equiv.	52.14	47.86	0.0
4.	6 equiv.	22.63	77.37	0.0
5.	8 equiv.	4.94	69.35	25.7

A solution was prepared by mixing PNBBr₂ and PNBBr for the optimization reaction of NaBH₄ reduction (from the GC-MS the initial mixture was found to be consisted of 80.72% PNBBr₂ and 19.23% PNT). Reduction reactions were carried out at room temperature with constant stirring for 2.5 h and solvent system was EDC and a few drops of methanol. Work-up was done using EDC-water mixture and with a small portion of separated organic layer GC-MS were recorded.

This journal is © The Royal Society of Chemistry [year]

Mass Balance related to the experimental results of Tables 1 and 2 in the manuscript

Table S4. Computation of Isolated yield of PNBBr with respect to PNT consumed and reagent utilized based on the data of Tables 1 and 2 and response factors computed from Figure S1.

1.	Total PNT taken	746.0 mmol
2.	PNT remaining in treated mother liquor suitable for perennial recycle	58.61 mmol
3.	PNT which could have been separated from product through more efficient washing and recycled along with treated mother liquor of Batch 8, Table 1	28.54 mmol
4.	Net PNT consumed	658.95 mmol
5.	Total Br equivalents in <i>BR-S</i> taken	659.2
5.	Gross weight of crystalline PNBBr obtained (96.9 % purity w/w)	126.3 g
6.	Actual PNBBr amount in solid product in g/mmol	122.39 g 566.62 mmol
7.	PNBBr in treated mother liquor suitable for perennial recycle	81.15 mmol
8.	Total isolated and recoverable PNBBr	647.77 mmol
9.	Yield of isolated and recoverable PNBBr with respect to PNT amount actually consumed and considering recycle of the rest of the amount taken	98.30
10.	Yield of isolated and recoverable PNBBr with respect to "Br" equivalents in <i>BR-S</i> amount taken	98.26