## **Electronic Supporting Information**

# A highly selective G-quadruplex-based luminescent switch-on probe for the detection of nanomolar strontium(II) ion in sea water

# Ka-Ho Leung,<sup>\*</sup> Victor Pui-Yan Ma,<sup>\*</sup> Hong-Zhang He,<sup>*a*</sup> Daniel Shiu-Hin Chan,<sup>*a*</sup> Chung-Hang Leung<sup>*bc*</sup> and Dik-Lung Ma<sup>\**a*</sup>

<sup>a</sup> Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.

E-mail: edmondma@hkbu.edu.hk

<sup>b</sup> State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China

<sup>c</sup> Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.

#### **Experimental section**

**Materials**. Reagents were purchased from Sigma Aldrich and used as received. Iridium chloride hydrate (IrCl<sub>3</sub>.xH<sub>2</sub>O) was purchased from Precious Metals Online. All oligonucleotides were synthesized by Techdragon Inc. (Hong Kong, China)

DNA sequences:

|      | Sequence                                                            |
|------|---------------------------------------------------------------------|
| T2   | $5' - G_4 T_2 G_4 T_2 G_4 T_2 G_4 - 3'$                             |
| T2m1 | 5'-GCAGT <sub>2</sub> GCAGT <sub>2</sub> GCAGT <sub>2</sub> GCAG-3' |
| T2m2 | 5'-GAAGT <sub>2</sub> GAAGT <sub>2</sub> GAAGT <sub>2</sub> GAAG-3' |

**General experimental**. Mass spectrometry was performed at the Mass Spectroscopy Unit at the Department of Chemistry, Hong Kong Baptist University, Hong Kong (China). Melting points were determined using a Gallenkamp melting apparatus and are uncorrected. Deuterated solvents for NMR purposes were obtained from Armar and used as received.

<sup>1</sup>H and <sup>13</sup>C NMR were recorded on a Bruker Avance 400 spectrometer operating at 400 MHz (<sup>1</sup>H) and 100 MHz (<sup>13</sup>C). <sup>1</sup>H and <sup>13</sup>C chemical shifts were referenced internally to solvent shift (CD<sub>3</sub>CN: <sup>1</sup>H,  $\delta$  1.94, <sup>13</sup>C  $\delta$  118.7; d<sub>6</sub>-DMSO: <sup>1</sup>H  $\delta$  2.50, <sup>13</sup>C  $\delta$  39.5). Chemical shifts ( $\delta$ ) are quoted in ppm, the downfield direction being defined as positive. Uncertainties in chemical shifts are typically ±0.01 ppm for <sup>1</sup>H and ±0.05 for <sup>13</sup>C. Coupling constants are typically ± 0.1 Hz for <sup>1</sup>H-<sup>1</sup>H and ±0.5 Hz for <sup>1</sup>H-<sup>13</sup>C couplings. The following abbreviations are used for convenience in reporting the multiplicity of NMR resonances: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. All NMR data was acquired and processed using standard Bruker software (Topspin). Emission spectra were recorded on a PTI QM4 spectrometer.

#### Synthesis of [Ir(ppy)<sub>2</sub>(biq)]PF<sub>6</sub>

The following complexes were prepared according to the reported literature method, the precursor complex  $[Ir_2(ppy)_4Cl_2]$ , and  $[Ir(ppy)_2(biq)]PF_6(1)$ , and characterized by <sup>1</sup>H-NMR, <sup>13</sup>C-NMR and HRMS.

## 1 as molecular probe for oligonucleotide based $\mathrm{Sr}^{2+}$ detection

5  $\mu$ M of oligonucleotides (T2 or mutants) and indicated concentrations of Sr<sup>2+</sup> ion were added into Tris-HCl buffer (20 mM Tris, pH 7.0). The solutions were heated to 95 °C for 10 min, and were cool to room temperature at 0.1 °C/s.

The pre-annealed solution was added into 400  $\mu$ L Tris-HCl buffer followed by addition of complex **1** at a final concentration of 2  $\mu$ M. Emission spectra were recorded in the 550–750 nm range, after equilibration at 25.0 °C for 10 min. Excitation wavelength = 390 nm.

#### Assay selectivity

5  $\mu$ M of oligonucleotides (T2) and 10  $\mu$ M of each ion (total 12 ions classified in three groups) were added into Tris-HCl buffer (20 mM Tris, pH 7.0) to make up a total volume of 100  $\mu$ L. The solutions were heated to 95 °C for 10 min, and were cool to room temperature at 0.1 °C/s.

The pre-annealed solution was added into 400  $\mu$ L Tris-HCl buffer followed by the addition of complex **1** at a final concentration of 2  $\mu$ M. Emission spectra were recorded in the 550–750 nm range, after equilibration at 25.0 °C for 10 min. Excitation wavelength = 390 nm.

#### Real sample analysis

Sea water samples collected from Lamma Island, Hong Kong were pretreated using a syringe filter to remove particulate impurities. Indicated concentrations of  $Sr^{2+}$  were then spiked into the water samples (100 µL). 5 µM of T2 was added into the sea water samples. The resulting solutions were heated to 95 °C for 10 min, and were cool to room temperature at 0.1 °C/s.

The pre-annealed water sample was added into 400  $\mu$ L Tris-HCl buffer followed by the addition of complex **1** at the final concentration of 2  $\mu$ M. Emission spectra were recorded in the 550–750 nm range, after equilibration at 25.0 °C for 10 min. Excitation wavelength = 390 nm.

#### References

- 1. M. S. Lowry, W. R. Hudson, R. A. Jr. Pascal and S. Bernhard, *J. Am. Chem. Soc.*, **2004**, *126*, 14129–14135.
- 2. H.-C. Su, H.-F. Chen, F.-C. Fang, C.-C. Liu, C.-C. Wu, K.-T. Wong, Y.-H. Liu and S.-M. Peng, J. Am. Chem. Soc., 2008, 130, 3413–3419.

**Fig. S1** Photograph image of **1** and T2 (5  $\mu$ M) in Tris buffer (20 mM, pH 7.0) in the absence (left) or presence (right) of 10  $\mu$ M Sr<sup>2+</sup> ions.



**Fig. S2** Intensity of complex 1 (2  $\mu$ M) and T2 5  $\mu$ M) in the presence of Sr<sup>2+</sup> ions (5  $\mu$ M) or 100-fold excess of common ions in sea water (K<sup>+</sup>, Ca<sup>2+</sup>, Na<sup>+</sup> and Mg<sup>2+</sup>). Error bars represent the standard deviations of the results from three independent experiments.



**Fig. S3** Relative luminescence intensity of complex **1** (2  $\mu$ M) in the presence of Sr<sup>2+</sup> ions (0.1, 1, 5 and 10  $\mu$ M) and T2 or T2 mutants (5  $\mu$ M). Error bars represent the standard deviations of the results from three independent experiments.



**Fig. S4**  $Sr^{2+}$  ion determination in sea water sample collected from Lamma Island, Hong Kong.  $Sr^{2+}$  ions (0.01, 0.1, 1, 3, 7, 10 and 20  $\mu$ M) were spiked into sea water samples, and the emission spectra were recorded with complex **1** (2  $\mu$ M) and T2 (5  $\mu$ M). Inset: Change in intensity at  $\lambda = 638$  nm versus  $Sr^{2+}$  concentration in sea water samples. Error bars represent the standard deviations of the results from three independent experiments.



**Fig. S5** Time course of luminescence response of the system which contains various concentrations of  $Sr^{2+}$  (0–10  $\mu$ M) and T2 (5  $\mu$ M) in diluted sea water sample upon addition of **1** (2  $\mu$ M) at 25 °C.



**Table S1.** Comparison of detection limit and range for some recently reported analytical techniques for  $Sr^{2+}$  ions. References refer to those in the main text.

| Method                            | Detection limit | Range         | Analyte             | Ref. |
|-----------------------------------|-----------------|---------------|---------------------|------|
| Functionalized gold nanoparticles | 7 μΜ            | 7–20 μM       | $Ca^{2+}, Ba^{2+},$ | 8    |
|                                   |                 |               | $\mathrm{Sr}^{2+}$  |      |
| Potentiometric membrane sensor    | 240 nM          | 240 nM-100 μM | $\mathrm{Sr}^{2+}$  | 10b  |

| PVC-membrane sensor                   | 550 nM | 550 nM-100 μM | $\mathrm{Sr}^{2+},\mathrm{Cd}^{2+},\mathrm{Cu}^{2}$ | 10c |
|---------------------------------------|--------|---------------|-----------------------------------------------------|-----|
|                                       |        |               | +                                                   |     |
| Ion-selective electrode               | 75 nM  | 75 nM–100 μM  | Sr <sup>2+</sup>                                    | 7b  |
| G-quadruplex-based fluorescence assay | 10 nM  | 10 nM-100 μM  | Sr <sup>2+</sup>                                    | 16  |
| Ion-imprinted Au NPs composites and   | 20 fM  | 20 fM-100 pM  | Alkaline-earth                                      | 9   |
| SPR spectroscopy                      |        |               | ions                                                |     |
| Method in this study                  | 13 nM  | 13 nM–10 μM   | $\mathrm{Sr}^{2+}$                                  |     |