Supporting Information

Standing pillar arrays of C-coated hollow SnO₂ mesoscale tubules for highly stable lithium ion storage electrode

By Jong Guk Kim,^{a,b} Sang Ho Lee,^a Sang Hoon Nam,^{a,b} Sung Mook Choi,^a and Won Bae Kim*^{a,b}

^aSchool of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea

^bResearch Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea

* Corresponding Author: Tel: +82-62-715-2317. Fax: +82-62-715-2304, E-mail: wbkim@gist.ac.kr To further examine the presence and oxidation state of carbon and tin in the C-coated SnO₂, X-ray photoelectron spectroscopy (XPS, ESCALAB 250) analysis was conducted using a monochromic Al-K α X-ray source (E=1486.6 eV). Data processing was performed with XPSPEAK software program. Fig. S1a shows high-resolution spectrum of the C 1s region of C-coated SnO₂. The main peak at 284.7 eV is attributed to non-oxygenated carbon (C-C) [1], whereas the minor peaks at 286.3 and 288.7 eV can be assigned to the oxidized carbon species such as C-O and C=O, respectively [2]. As shown in Fig. S1b, O 1s spectra are deconvolved into two peaks. One peak at 530.3 eV corresponds to un-reduced SnO₂ (Sn-O) [3]. Another peak at 532.0 eV is attributed to oxidized carbon (C-O), which is in a good agreement with Fig. S1a [3]. Fig. S1c depicts Sn 3d spectra fitted with two symmetrical peaks at 486.4 and 494.8 eV. The binding energy separation between two peaks is 8.4 eV, which is line with previous reports [3]. Consequently, the XPS results demonstrate that C-coated hollow SnO₂ pillars are composed of SnO₂ and carbon.

Reference

- 1 C. Zhang, X. Peng, Z. Guo, C. Cai, Z. Chen, D. Wexler, S. Li, H. Liu, Carbon, 2012, 50, 1897.
- 2 J. Gao, F. Liu, Y. Liu, N. Ma, Z. Wang, X. Zhang, Chem. Mater., 2010, 22, 2213.
- 3 M.-S. Park, Y.-M. Kang, J.-H. Kim, G.-X. Wang, S.-X. Dou, H.-K. Liu, Carbon, 2008, 46, 35.

Fig. S1 XPS spectra of (a) C 1s, (b) O 1s, and (c) Sn 3d of C-coated hollow SnO₂ pillar arrays.

Fig. S2 (a) Cycling performance at various current densities between 0.005 and 2.0 V of Ccoated hollow SnO_2 arrays together non-carbon-coated hollow SnO_2 arrays. (b) Normalized capacity values at each current density by the average capacity values under 78.1 mA g⁻¹ current density.

Table S1. Summary of the cycle performance for as-prepared SnO_2 electrodes at a rate of 78.1 mA g⁻¹.

electrode	Initial C. E. [%] ^a	2 nd cycle Discharge capacity [mAh g ⁻¹]	50 th cycle Discharge capacity [mAh g ⁻¹]	Capacity retention after 2 nd cycle capacity [%]
C-coated SnO ₂ array	58.8	796.0	487.6	61.3
SnO ₂ array	52.4	717.8	427.9	59.6
SnO ₂ nanopowder	33.0	394.0	0.7	0.2

^aInitial Coulombic efficiency (C. E.) is the ratio of the extracted lithium to the inserted lithium during the 1st cycle.