Supporting Information

1-(2-Naphthyl)benzimidazolium based tripod for the fluorescence enhancement based recognition of surfactants in water

Sandeep Kumar, Shafali, Prabhpreet Singh and Subodh Kumar^{*}

Corresponding author. Address: Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143 005, India.

Corresponding author. Mobile: +91 9872361528.

E-mail address: subodh_gndu@yahoo.com

Content

1.	UV-Vis and fluorescence behavior of TRI-BINAP	1-6
2.	Thermodynamic parameters	6
3.	NMR Spectral analysis of TRI-BINAP (¹ H, ¹³ C NMR)	7-10
4.	HRMS analysis of TRI-BINAP-1 + SDBS complex	11-12
5.	References	12

1. UV-Vis and fluorescence behavior of TRI-BINAP-1

Complexation studies of **TRI-BINAP-1** (5 μ M) were performed in CH₃CN, DMSO and 95% aqueous DMSO. The UV-Vis and emission spectrum of **TRI-BINAP-1** (5 μ M) in both CH₃CN and DMSO exhibits a significant change with 50 μ M addition of tetrabutylammonium salts of F⁻, AcO⁻ and H₂PO₄⁻, whereas all other anions viz. Cl⁻, Br⁻, I⁻, NO₃⁻, HSO₄⁻, ClO₄⁻, CN⁻ and even sodium salts of alkyl chain (C₃-C₁₂) carboxylates and sulfonates, caused insignificant change in the absorption and emission spectrum of **TRI-BINAP-1** (Figure SI 1, 2).

Fig. SI 1. Effect of tetrabutylammonium salts of different anions and sodium salts of alkyl carboxylates and sulfonates on the (a) UV-Vis spectra; (b) Fluorescence spectra of **TRI-BINAP-1** (5 μ M) in CH₃CN solutions.

Fig. SI 2. Effect of tetrabutylammonium salts of different anions and sodium salts of alkyl carboxylates and sulfonates on the (a) UV-Vis spectra; (b) Fluorescence spectra of **TRI-BINAP-1** (5 μ M) in DMSO solutions.

Figure SI 3. Effect of tetrabutylammonium salts of different anions and sodium salts of carboxylates and sulfonates on the (a) UV-Vis spectrum; (b) Fluorescence spectrum of **TRI-BINAP-1** (5 μ M) in 95% aqueous DMSO solutions.

Figure SI 4. (a) Effect of gradual addition of SDS on the absorption spectrum of **TRI-BINAP-1** (5 μ M) in 95% aqueous DMSO solution.

Figure SI 5. Effect of gradual addition of sodium laurate (SL) solution to the absorption spectra of **TRI-BINAP-1** (5 μ M) in 95% Aqueous DMSO solution.

Fluorescence titration profile of TRI-BINAP (5 μ M) with SDS in 95% aqueous solution.

Figure SI 6. (a) Effect of gradual addition of SDS to the emission spectra of **TRI-BINAP-1** (5 μ M) in 95% aqueous DMSO solution. (b) FI vs. conc. plot of **TRI-BINAP-1** titration with SDS.

Figure SI 7. (a) Effect of gradual addition of sodium laurate (SL) to the emission spectra of **TRI-BINAP-1** (5 μ M) in 95% aqueous DMSO solution. (b) FI vs. conc. plot of **TRI-BINAP-1** titration with SL.

Figure SI 8. (a) Effect of gradual addition of sodium myristate (SM) on the emission spectrum of **TRI-BINAP-1** (5 μ M) in 95% aqueous DMSO solution.

Figure SI 9. Job's plot² analysis of TRI-BINAP-1 titration with SDS in 95% aqueous DMSO solution.

Figure SI 10. Job's plot analysis of TRI-BINAP-1 titration with sodium laurate in 95% aqueous DMSO solution.

2. Evaluation of Thermodynamic parameters:

To evaluate thermodynamic parameters i.e. enthalpy and entropy, responsible for binding of **TRI-BINAP-1** with SDBS/SDS, the UV-Vis titrations of **TRI-BINAP-1** at four different temperatures 20, 30, 35 and 40 °C were performed.

Figure SI 11. Free energy change vs. temperature plots of TRI-BINAP-1 against SDBS and SDS.

3. NMR Spectral analysis of TRI-BINAP-1 with SDS and SDBS

Figure SI 12. ¹H NMR titration of SDBS (5 mM) with gradual addition of **TRI-BINAP-1** up to 5 mM in CD_3CN-D_2O (1:1) solutions.

Figure SI 13. ¹H NMR spectrum of (1) **TRI-BINAP-1** (5 mM); (2) SDS (5 mM); and (3) **TRI-BINAP-1** + SDS (1:1) in CD₃CN-D₂O (1:1).

Figure SI 14. ¹H NMR spectrum showing expansion of aromatic part. Aromatic protons of **TRI-BINAP-1** showed a change in their chemical shift values on addition of one equivalent SDS.

Figure SI 15. ¹H NMR spectrum of (1) TRI-BINAP-1 (5 mM); (2) SDBS (5 mM); and (3) TRI-BINAP-1 + SDBS (1:1) in CD₃CN-D₂O (1:1).

Figure SI 16. ¹H NMR spectrum showing up-field shift aliphatic protons of SDBS in **TRI-BINAP-1** + SDS (1:1) in CD₃CN-D₂O (1:1).

Figure SI 17. ¹H NMR spectrum showing down-field shift of BimC2-H protons in **TRI-BINAP-1** + SDBS (1:1) in CD₃CN-H₂O (1:1).

Figure SI 18. ¹H NMR spectrum showing no change in the aliphatic protons of Sodium Laurate with gradual addition of **TRI-BINAP-1** in CD₃CN-D₂O (1:1).

4. HRMS of 1:1 solutions of TRI-BINAP with SDBS and SDS

Figure SI 19. HRMS spectrum of TRI-BINAP-1

Figure SI 20. HRMS spectrum of 1:1 solution of TRI-BINAP-1 and SDBS

SI 21. HRMS spectrum of 1:1 solution of TRI-BINAP-1 and SDS

References:

- (a) C. Zhang, L. Liheng and Z. Chen, *Chem. Phys. Lett.*, 2006, **420**, 330. (b) Z. Chen, C. Zhang and L. Feng, *Spectrochim Acta, Part A: Mol. Biomol. Spect.*, 2005, **62**, 592. (c) A. K. Verma, J. Singh, V. K. Sankar, R. Chaudhary and R. Chandra, *Tetrahedron Lett.* 2007, **48**, 4207.
- 2. P. Job, Ann. Chim. 1928, 9, 113.