Electronic Supplementary Information (ESI)

Controlled synthesis of Co₃O₄ spinel with Co(acac)₃ as precursor

Patrick Mountapmbeme Kouotou, Zhen-Yu Tian*, Udo Mundloch, Naoufal Bahlawane[§],

Katharina Kohse-Höinghaus

Department of Chemistry 1, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany.

* Corresponding author. Tel: +49-521 1062199, Fax: +49-521 1066027; E-mail: zhenyu.tian@uni-bielefeld.de.

§ Present address: Nanomaterials Research Unit, SAM Department, Centre de Recherche Public - Gabriel Lippmann, L-4422 Belvaux, Luxembourg.

Table S1: List of solvents and temperature range used for Co₃O₄ preparation

Precursor	Temperature (°C)	Preparation techniques	Solvents	Reference
Co(acac) ₂	230-440	PSE-CVD	EtOH	1
$Co(acac)_2$	490-560	MOCVD	EtOH/chloroform	2
$Co_2(CO)_8$	600, 650	PE-CVD	1-Hexene	3
$Co(hfac)_2 \cdot 2H_2O \cdot tetraglyme$	65-180	MOCVD	CH ₂ Cl ₂	4
Co(tmhd) ₂	350-500	CVD	-	5
	350-540	MOCVD	Monoglyme	6
CoCl ₂	300	Spray pyrolysis	Distilled water	7-9
Co(CH ₃ CO ₂) ₂ ·4H ₂ O	600	Sol-gel	2-Methoxyethanol	10
Co(NO ₃) ₂	400-480	Spray pyrolysis	-	11
Co(acac) ₃	360-540	MOCVD	Toluene	12

Note: PSE-CVD: pulsed spray chemical vapor deposition

MOCVD: metal organic vapor deposition

PE-CVD: pulsed evaporation

acac: acetylacetonate (2, 4-pentanedionate)

 $hfac:\ hexafluoroacetylacetonate\ (1,1,1,5,5,5-Hexafluoro-2,4-pentanedione)$

tmhd: tetramethylheptanedionate (2,2 6,6-tetramethyl-3,5-heptanedionate)

Table S2: Experimental conditions for the preparation of Co₃O₄

Precursor	Co(acac) ₃
Solvent	EtOH; toluene or THF
Concentration of precursor	5 mM
Frequency and opening time	4 Hz, ~2 ms
Evaporation temperature	220 °C
Vaporizer temperature	240 °C
Substrate temperature range	350 °C; 400 °C; 450 °C and 500 °C
System pressure (mbar)	20
N ₂ (SLM)	0.16
O ₂ (SLM)	0.5
Substrates	Glass, silicon, planar or mesh of stainless steel

Physicals properties	Ethanol	Toluene	THF	
Boiling point (°C) ^{<i>a</i>}	78.35	110.65	68.85	
Density $(g ml^{-1})^{b}$	0.790	0.866	0.880	
Vapor pressure (bar, at 220 °C)	46.57 ^a	10.53 ^a	27.36 °	
$\Delta_{ m vap} { m H}^{\circ} ~({ m kJ/mol})^{a}$	42 ± 2	37 ± 3	32.16	
Dipole moment (D, 20 °C) ^b	1.69	0.31	1.75	
Hydrogen bonding ^b	19.4	2.0	8.0	

Table S3: Physical properties of the solvents

Note: ^{*a*} data is from NIST chemistry webbook;^{13 *b*} data is from Koenhen and Smolders;^{14 *c*} vapor pressure of THF is from Dortmund data bank.¹⁵

Table S4: Comparison with other results

Catalyst	Weight (mg)	Gas composition	Flow rate (ml min ⁻¹)	T ₉₀ ^{<i>a</i>} (°C)	$\begin{array}{c} \text{GHSV} \ ^{b} \\ (\text{ml g}^{-1} \ \text{h}^{-1}) \end{array}$	Reference
Co ₃ O ₄ thin film	12	1% CO/ 10% O ₂ /89% Ar	15	350	75000	This work
Co ₃ O ₄ bulk	50	1% CO/ 8% O ₂ in He	37	350	44400	16
CeO ₂	100	2% CO/ 2% O_2 in N_2	100	374	60000	
Al ₂ O ₃	100	2% CO/ 2% O ₂ in N ₂	100	394	60000	17
CeAlO ₃	100	2% CO/ 2% O ₂ in N ₂	100	465	60000	
Pt/H ₂ SO ₄ /ZrO ₂	50	3.5% CO/ 4% O_2 in N_2	100	290	120000	18
Co ₃ O ₄ thin film	12	1% C ₃ H ₆ /10% O ₂ /89% Ar	15	380	75000	This work
Co ₃ O ₄ thin film	12	2% $C_3H_6/20\%O_2/78\%$ Ar	15	385	75000	19
Au/A_2O_3	200	1.5% C ₃ H ₆ /4% O ₂ in He	75	410	22500	20
Ag/Al ₂ O ₃	50	3% C ₃ H ₆ /10% O ₂ in N ₂	10	420	12000	21
$La_{1.7}Sr_{0.3}CuO_4S_{0.2}$	200	0.1% C ₃ H ₆ / 5% O ₂ / in He	100	500	30000	22

Note: ^a T₉₀ refers to the temperature at which 90% of the fuel is converted; ^b GHSV is gas hourly space velocity.

Fig. S1 Gas phase evolution of EtOH with and without Co(acac)₃.

Fig. S2 Gas phase evolution of toluene with and without Co(acac)₃.

Fig. S3 Gas phase evolution of THF with and without $Co(acac)_3$.

Fig. S4 Gas phase evolution of THF at 220, 350 and 450 °C with and without Co(acac)₃.

Notes to the figures: Electron impact with an energy of 25 eV was used as the ionization source to perform the experimental investigation. In addition to the fragments generated by the high electron energy, some products, such as C_2H_2 in Fig. S1 and CH_3O in Fig. S3 become detectable. At high temperatures (THF as an example, see Fig. S4), pyrolysis as well as oxidation of the solvent are observed by giving more water (m/e = 18), carbon dioxide (m/e = 44), furan (m/e = 68) and other products, which reveals the occurrence of the gas phase reaction. This is also the case for ethanol and toluene (not shown here). These may affect the kinetics of film growth and morphology.

References (ESI)

- 1 N. Bahlawane, E. Fischer Rivera, K. Kohse-Höinghaus, A. Brechling, U. Kleineberg, Appl. Catal. B: Environ., 2004, 53, 245.
- 2 S. M. Jogade, P. S. Joshi, B. N. Jamadar, D. S. Sutrave, J. Nano-Electron. Phys., 2011, 3, 203.
- 3 C. Guyon, A. Barkallah, F. Rousseau, K. Giffard, D. Morvan, M. Tatoulian, Surf. Coat. Tech., 2011, 206, 1673.
- 4 A. Gulino, P. Dapporto, P. Rossi, I. Fragala, Chem. Mater., 2003, 15, 3748.
- 5 D. Barreca, C. Massignan, Chem. Mater., 2001, 13, 588.
- 6 M. Burriel, G. Garcia, J. Santiso, A. Abrutis, Z. Saltyte, A. Figueras, Chem. Vapor Depos., 2005, 11, 106.
- 7 P. S. Patil, L. D. Kadam, C. D. Lokhande, Thin Solid Films, 1996, 272, 29.
- 8 L. D. Kadam, P. S. Patil, Mater. Chem. Phys., 2001, 68, 225.
- 9 P. S. Patil, L. D. Kadam, C. D. Lokhande, Solar Energy Materials and Solar Cells, 1998, 53, 229.
- 10 K. J. Kim, Y. R. Park, Solid State Commun., 2003, 127, 25.
- 11 M. Hamdani, J. F. Koenig, P. Chartier, J. Appl. Electrochem., 2010, 18, 556
- 12 M. Burriel, G. Garcia, J. Santiso, A. N Hansson, S. Linderoth, A. Figueras, Thin Solid Films, 2005, 473, 98.
- 13 P. J. Linstrom, W. G. mallard, Eds., NIST Chemistry WebBook, NIST Standard Reference database Number 69, June 2005, national Institute of Standards and Technology, Gaithersburg MD, 20899 (<u>http://webbook.nist.gov</u>).
- 14 D. M. Koenhen, C. A. Smolders, J. Appl. Polym. Sci., 1975, 19, 1163.
- 15 The Dortmund Data Bank for thermophysical properties of pure component and mixtures (<u>http://www.ddbst.com</u>).
- 16 Y. Ren, Z. Ma, L. Qian, S. Dai, H. He, P. G. Bruce, Catal. Lett., 2009, 131, 146.
- 17 P. A. Deshpande, S. T. Aruna, G. Madras, Catal. Sci. Technol., 2011, 1, 1683.
- 18 H. C. Wu, L. C. Liu, S. M. Yang, Appl. Catal. A: Gen., 2001, 211, 159.
- 19 Z. Y. Tian, P. H. Tchoua Nganou, V. Vannier, K. Kohse-Höinghaus, N. Bahlawane, Appl. Catal. B: Environ., 2012, 117-118, 125.
- 20 S. Ivanova, C. Petit, V. Pitchon, Gold Bull., 2006, 39, 3.
- 21 R. Zhang, H. Alamdari, S. Kaliaguine, Catal. Lett., 2007, 119, 108.
- 22 M. Machida, K. Ochiai, K. Ito, K. Ikeue, J. Catal., 2006, 238, 58.