Phase evolution and oxide ion conduction behavior of $Dy_{1-x}Bi_xO_3$ (0.00 $\leq x \leq 0.50$) composite system

Vasudhara¹, S. J. Patwe¹, A. K. Sahu², S. N. Achary¹ and A. K. Tyagi¹

¹Chemistry Division, Bhabha Atomic Research Centre

Mumbai 400085, India

²Glass & Advanced Ceramics Division, Bhabha Atomic Research Centre Mumbai 400085, India

Supplementary Information

S-I.	Relation between the structure of cubic δ -Bi ₂ O ₃ and average structure of rhombohedral Dy _{0.56} Bi _{0.44} O _{1.50} .
S-II.	Typical observed and calculated inert-planar spacing in rhombohedral sub and super structure.
S-III.	Analysis elemental compositions from EDX spectra
S-IV.	SEM micrographs of $Dy_{0.67}Bi_{0.33}O_{1.50}$ at higher resolution.
S-V.	SEM micrographs of $Dy_{0.56}Bi_{0.44}O_{1.50}$ at higher resolution. The lower panel indicates the elemental EDX line profile. (Blue: Bi, Green: Dy and Red: O)
S-VI.	SEM micrographs of $Dy_{0.50}Bi_{0.50}O_{1.50}$ at higher resolution. The lower panel indicates the elemental EDX line profile. (Blue: Bi, Green: Dy and Red: O)

S-I. Relation between the structure of cubic δ -Bi₂O₃ and average structure of rhombohedral $Dy_{0.56}Bi_{0.44}O_{1.50}$.

 $a_r = 3.82 \text{ Å}, \alpha_r = 60^{\circ}$

 $a_r = 3.858$ Å, $\alpha_r = 58.54^{\circ}$

Dy_{0.56}Bi_{0.44}O_{1.50}

C_r

b_r

a_r

🔵 Dy/Bi

Ο

	a = 3.7728 Å, c = 9.554	1 Å, V = 117.77 Å ³	$a = 15.210(1) \text{ Å}, c = 19.067(3) \text{ Å}, V = 3820.1(8) \text{ Å}^3$		
d(obs) Å	h k l	d(cal) Å	h k l	d(cal) Å	
4.766			0 0 4	4.767	
3.612			3 0 3	3.613	
3.529			2 2 2	3.532	
3.181	0 0 3	3.183	0 0 6	3.178	
3.088	1 0 1	3.091	106	3.089	
2.897			3 1 4	2.900	
2.695	0 1 2	2.696	2 2 5	2.693	
2.541			5 0 2	2.539	
2.361			5 1 0	2.366	
2.285			4 0 6	2.287	
2.209			424	2.207	
2.112			4 3 2	2.112	
2.052			4 3 3	2.050	
1.962			4 2 6	1.960	
1.927	1 0 4	1.927	524	1.929	
1.885	1 1 0	1.886	1 0 10	1.887	
1.831			2 0 10	1.831	
1.751			7 0 4	1.750	
1.668			527	1.668	
1.649	0 1 5	1.649	4 0 10	1.650	
1.622	1 1 3	1.623	8 0 2	1.623	
1.610	0 2 1	1.610	7 2 0	1.609	
1.592	006	1.591	8 0 3	1.594	
1.546	2 0 2	1.546	5 0 10	1.545	
1.470			643	1.470	
1.408			7 1 8	1.408	
1.366			740	1.366	
1.348	2 0 4	1.348	9 1 3	1.349	
1.324			8 3 2	1.324	
1.299			655	1.298	
1.259	1 0 7	1.259	751	1.259	
1.241	2 0 5	1.241	3 2 14	1.242	
1.224	2 1 1	1.225	664	1.225	
1.217	1 1 6	1.216	10 0 6	1.217	
1.196	2 1 2	1.196	11 0 1	1.195	
1.160			762	1.160	
1.120	1 0 8	1.121	5 1 15	1.120	
1.097	2 1 4	1.097	766	1.097	
1.089	300	1.089	5 2 15	1.089	
1.047	207	1.047	6 0 16	1.047	
1.037	2 1 5	1.037	12 1 3	1.037	
1.031	3 0 3	1.030	11 3 1	1.030	

S-II. Typical observed and calculated inert-planar spacing in rhombohedral sub and superstructure.

S-III. Analysis elemental compositions from point EDX spectra

Compositions	Point	Observed elemental			Expected elemental		
		concentration (%)			concentration (%)		
		Dy	Bi	0	Dy	Bi	0
Dy _{0.56} Bi _{0.44} O _{1.50}	1	26.87	13.13	60.00	26.8	13.2	60.0
	2	25.79	14.21	60.00			
Dy _{0.67} Bi _{0.33} O _{1.50}	1	22.60	17.40	60.00			
	2	22.76	17.74	60.00	22.8	17.6	60.0
	3	22.92	17.08	60.00			
Dy _{0.50} Bi _{0.501.50}	1	20.08	19.16	60.00	20.0	20.0	60.00
	2	18.91	21.08	60.00			

S. IV. SEM micrographs of $Dy_{0.67}Bi_{0.33}O_{1.50}$ at higher resolution.

S. V. SEM micrographs of $Dy_{0.56}Bi_{0.44}O_{1.50}$ at higher resolution. The lower panel indicates the elemental EDX line profile. (Blue: Bi, Green: Dy and Red: O)

S.VI. SEM micrographs of $Dy_{0.50}Bi_{0.50}O_{1.50}$ at higher resolution. The lower panel indicates the elemental EDX line profile. (Blue: Bi, Green: Dy and Red: O)

