Water-Soluble Gold Nanoparticles Stabilized with Cationic Phosphonium

Thiolate Ligands

Yon Ju-Nam,^a Yu-Su Chen,^b Jesus J. Ojeda,^c David W. Allen,^b Neil A. Cross,^b Philip H. E. Gardiner,^b and Neil Bricklebank^b*

^{*a.*} Multidisciplinary Nanotechnology Centre, College of Engineering, Swansea University, Singleton Park, Swansea, SA2 8PP, UK

^{b.} Biomedical Research Centre, Sheffield Hallam University, City Campus, Sheffield S1 1WB, UK

^{c.} Experimental Techniques Centre, Brunel University, Kingston Lane, Uxbridge, Middlesex, UB8 3PH, UK

*Corresponding author E-mail: n.bricklebank@shu.ac.uk

Supplementary Figures

(b)

Fig S1. Widescan XPS spectra of freeze-dried phosphonium-AuNPs; (a) obtained from PPTS ligand; (b) Nanoparticles obtained from PPTA ligand.

Fig S1. (c) Widescan XPS spectrum of freeze-dried phosphonium-AuNPs obtained from FPPTS ligand.

Fig S2. High resolution Au(4f) XPS spectra of freeze-dried phosphonium-AuNPs. (a) Nanoparticles obtained from PPTA ligand; (b) Nanoparticles obtained from FPPTS ligand.

Fig S3. High resolution S_{2p} XPS spectrum of the PPTS ligand.

(a)

Fig S4. SIMS spectrum of phosphonium-AuNPs derived from PPTS ligands: (a) positive ion mode; (b) negative ion mode.

Fig S5. SIMS spectrum of phosphonium-AuNPs derived from PPTA ligands: (a) positive ion mode; (b) negative ion mode.

(b)

Fig S6. SIMS spectrum of phosphonium-AuNPs derived from FPPTS ligands: (a) positive ion mode; (b) negative ion mode.

Fig.S7 UV-visible spectra of a fresh solution of phosphonium-AuNPs prepared using PPTS ligand () and the freeze-dried nanoparticles re-suspended in water (•) and methanol (\blacktriangle).