Synthesis of C-2-Methylene and C-2-Methyl C-Glycosides by Claisen Rearrangement of 2-Vinyloxymethly Glycals

Ramu Sridhar Perali and Sudharani Chalapala

School of Chemistry, University of Hyderabad, Hyderabad – 500 046

e-mail: prssc@uohyd.ernet.in

Supporting information

Contents:

			Page No
1.	Some of the bio-active Natural products possessing C-2-methylene/C-2-methyl-C-glycoside subunits	:	2 and 3
2.	General Experimental procedures	:	4 - 5
3.	Spectroscopic data for compounds	:	6 - 16
4.	NMR spectra of Compounds	:	17 - 149

2. General Experimental procedures

- **2.1. General procedure for the preparation of 2-formyl glycal derivatives:** To a solution of dry DMF (2 mL) and POCl₃ (3 mmol) at 0 °C was added a precooled solution of glycal (1 mmol) in of dry DMF (2 mL) dropwise for about 30 min. The mixture was allowed to stir for 5-6 h at room temperature. After complete disappearance of starting material (by TLC) the reaction was quenched with aq NaHCO₃ (sat) solution and diluted with diethylether. The organic layer was separated and the aqueous layer was extracted with diethyl ether. The combined ether layers were washed with brine solution, dried over anhydrous Na₂SO₄ and concentrated. The crude thus obtained was purified by column chromatography to yield 2-formyl glycal derivatives as pale yellow colored gummy compounds in 60-80% yield.
- **2.2.** General procedure for the preparation of 2-hydroxymethyl glycal derivatives: To a stirred solution of 2-formyl glycal (1 mmol) in dry ethanol (4 mL) at 0 °C, was added solid NaBH₄ (1.5 mmol) and the stirring was continued for 3 h. After completion of the reaction (by TLC), it was quenched with saturated NH₄Cl solution. Ethanol was evaporated under reduced pressure and aqueous suspension was extracted with dichloromethane (2x50 mL). The combined organic layers were washed with water, brine solution, dried over anhydrous NaSO₄ and concentrated. The obtained crude product was purified by silica-gel column chromatography to give 2-hydroxymethyl glycal derivatives in 90-95% yield.
- 2.3. General procedure for the preparation of 2-vynyloxymethyl glycal derivatives: A mixture of primary alcohol (0.2 mmol), ethyl vinyl ether (3 mL, freshly distilled over sodium) and mercuric acetate (0.05 mmol) was stirred at reflux under an argon atmosphere. After 24 h the reaction was cooled to RT, and acetic acid (2.98 μL) was added and stirring was continued for 3 h at RT. The mixture was diluted with an equal volume of hexane and washed with 5% aqueous KOH (2 X 5 mL), water (3 X 5 mL), with brine solution and concentrated under reduced pressure. The residue was purified

using basic alumina to afford 2-vinyloxymethyl glycal derivatives as colorless gummy liquid in 45-60% yield.

- **2.4.** General procedure for Claisen rearrangement reaction: A solution of 2vinyloxymethyl glycal derivative (1 mmol) in toluene (15 mL), was heated at 180-185 °C in sealed tube for 5-6 h. Cooling the reaction followed by evaporation of toluene over rotary evaporator and purification over silica-gel provided the C-2-methylene-Cglycoside derivatives in 60-80 % yield.
- **2.5.** General procedure for Selective hydrogenation of olefin: To a stirred solution of olefin (0.2 mmol) in methanol (5 mL) was added Na₂CO₃,(0.2 mmol), 10% Pd/C (10 mg). The mixture was stirred for 4 h under H₂ atmosphere. After completion of the reaction (by TLC) the suspension was filtered through a pad of Celite and concentrated *in vacuo* to afford the corresponding C-2-methyl-C-glycoside derivative as oil in 90-95% yield.

3. Spectroscopic data for compounds:

Compound 2: ¹**H** (500 MHz, CDCl₃): δ 7.30-7.38 (m, 15H), 6.56 (s, 1H), 6.49 (dd, 1H, J = 7 Hz, J = 14.5 Hz), 4.82 (d, 1H, J = 13 Hz), 4.69 (d, 1H, J = 11 Hz), 4.68 (d, 1H, J = 11.5 Hz), 4.60 (d, 1H, J = 12.5 Hz), 4.58 (s, 2H), 4.44 (d, 1H, J = 11 Hz), 4.25-4.30 (m, 3H), 4.07 (dd, 1H, J = 2 Hz, J = 7 Hz), 4.00 (d, 1H, J = 11 Hz), 3.97 (dd, 1H, J = 5.5 Hz, J = 7 Hz), 3.84 (dd, 1H, J = 5.5 Hz, J = 11 Hz), 3.76 (dd, 1H, J = 3.5 Hz, J = 11 Hz). ¹³C (125 MHz, CDCl₃): δ 151.2, 144.1, 138.1, 137.9, 137.9, 128.4, 128.3, 128.3, 128.1, 127.9, 127.8, 127.7, 127.6, 127.6, 127.6, 127.5, 109.1, 87.2, 76.7, 74.5, 74.0, 73.3, 73.1, 72.8, 68.1, 66.2. Low-resolution MS (EI): m/z: 472 (M⁺), HRMS (ESI) calcd for C₃₀H₃₂O₅+Na 495.2148, found 495.2148.

Compound 3 α : Not able to isolate in pure form due to its anomerization to the more stable **3** β .

Compound 3 β : ¹**H** (500 MHz, CDCl₃): δ 9.86 (s, 1H), 7.18-7.40 (m, 15H), 5.37 (s, 1H), 4.98 (s, 1H), 4.88 (d, 1H, *J* = 11 Hz), 4.78 (d, 1H, *J* = 11.5 Hz), 4.71 (d, 1H, *J* = 11.5 Hz), 4.59 (d, 1H, *J* = 12.5 Hz), 4.54 (d, 1H, *J* = 11 Hz), 4.52 (d, 1H, *J* = 12 Hz), 4.34 (dd, 1H, *J* = 5.5 Hz, *J* = 7.5 Hz), 4.11 (d, 1H, *J* = 8 Hz), 3.67-3.72 (m, 2H), 3.63-3.64 (m, 1H), 3.56 (t, 1H, *J* = 9 Hz), 2.93 (ddd, 1H, *J* = 2 Hz, *J* = 7.5 Hz, *J* = 16.5 Hz), 2.82 (dd, 1H, *J* = 5 Hz, *J* = 16.5 Hz). ¹³C (125 MHz, CDCl₃): δ 200.5, 143.3, 138.1, 138.1, 138.0, 128.5, 128.4, 128.3, 127.9, 127.8,

127.7, 127.6, 108.1, 84.2, 79.8, 79.3, 74.8, 73.4, 73.3, 72.6, 69.1, 45.3. Low-resolution MS (EI): m/z: 473 (M⁺+1).

Compound 5a: ¹**H** (**500 MHz, CDCl**₃): δ 7.18-7.38 (m, 15H), 5.25 (s, 1H), 5.11 (s, 1H), 4.79 (d, 1H, J = 11.0 Hz), 4.72 (d, 1H, J = 11.5 Hz), 4.63 (d, 1H, J = 11.5 Hz), 4.60 (dd, 1H, J = 5.5 Hz, J = 9.5 Hz), 4.58 (d, 1H, J = 12.0 Hz), 4.52 (d, 1H, J = 10 Hz), 4.48 (d, 1H, J = 11.5 Hz), 4.20 (d, 1H, J = 7.0 Hz), 3.92-3.95 (m, 1H), 3.81-3.84 (m, 2H), 3.63-3.64 (m, 2H), 3.46 (dd, 1H, J = 7.0 Hz, J = 8.5 Hz), 2.62 (bs, 1H), 2.16-2.24 (m, 1H), 1.72-1.77 (m, 1H). ¹³C (125 MHz, CDCl₃): δ 144.0, 138.0, 137.9, 128.4, 128.3, 127.9, 127.8, 127.7, 127.7, 111.0, 80.9, 80.1, 77.0, 73.9, 73.4, 73.0, 72.7, 69.4, 61.1, 33.2. Low-resolution MS (EI): m/z: 474 (M⁺), HRMS (ESI) calcd for C₃₀H₃₄O₅+Na 497.2304, found 497.2304.

Compound 5β: ¹**H** (500 MHz, CDCl₃): 7.19-7.42 (m, 15H), 5.34 (s, 1H), 5.09 (s, 1H), 4.89 (d, 1H, J = 10.5 Hz), 4.78 (d, 1H, J = 11.5 Hz), 4.69 (d, 1H, J = 11.5 Hz), 4.57 (d, 1H, J = 12.0 Hz), 4.53 (d, 1H, J = 11.0 Hz), 4.52 (d, 1H, J = 12.0 Hz), 4.07 (d, 1H, J = 8.5 Hz), 4.00 (dd, 1H, J = 2.5 Hz, J = 10.0 Hz), 3.89 (t, 2H, J = 5.0 Hz), 3.70 (dd, 1H, J = 2.0 Hz, J = 7.0 Hz), 3.65 (ddd, 1H, J = 2.0 Hz, J = 6.0 Hz, J = 9.0 Hz), 3.57-3.61 (m, 2H), 3.46 (t, 1H, J = 9.0 Hz), 2.83 (bs, 1H), 2.06-2.12 (m, 1H), 1.94-1.99 (m, 1H). ¹³C (125 MHz, CDCl₃): δ 144.1, 138.1, 138.0, 138.0, 128.5, 1284, 128.3, 127.9, 127.8, 127.7, 127.6, 107.7, 84.3, 80.2, 78.8, 74.8, 73.4, 73.2, 69.6, 61.2, 33.4. Low-resolution MS (EI): m/z: 474 (M⁺), HRMS (ESI) calcd for C₃₀H₃₄O₅+Na 497.2304, found 497.2304.

2-Hydroxymethyl-3,4,6-tri-*O***-benzyl-D-galactal**: ¹**H** (400 MHz, CDCl₃): δ 7.34-7.42, (m, 15H), 6.46 (s, 1H), 4.89 (d, 1H, J = 11.6 Hz), 4.88 (d, 1H, 11.6 Hz), 4.72 (d, 1H, J = 12 Hz), 4.66 (d, 1H, J = 11.6 Hz), 4.61 (d, 1H, J = 11.6 Hz), 4.51 (d, 1H, J = 12 Hz), 4.40 (d, 1H, J = 2.4 Hz), 4.31 (bs, 1H), 4.17 (d, 1H, J = 11.6 Hz), 4.02-4.09 (m, 2H), 3.88 (dd, 1H, J = 7.2 Hz, J = 10 Hz), 3.80 (dd, 1H, J = 5.2 Hz, J = 10 Hz), 2.37 (bs, 1H). ¹³C (100 MHz, CDCl₃): δ 142.3, 137.9, 137.6, 128.2, 128.1, 127.6, 127.5, 127.5, 112.0, 75.3, 72.1, 73.0, 72.7, 72.3, 71.1, 67.8, 61.0.

Compound 7: ¹**H** (400 MHz, CDCl₃): δ 7.30-7.34, (m, 15H), 6.45 (s, 1H), 6.42 (dd, 1H, J = 6.8 Hz, J = 14.4 Hz), 4.84 (d, 1H, J = 11.6 Hz), 4.77 (d, 1H, J = 11.6 Hz), 4.64 (d, 1H, J = 11.6 Hz), 4.64 (d, 1H, J = 11.6 Hz), 4.51 (d, 1H, J = 12 Hz), 4.45 (d, 1H, J = 11.6 Hz), 4.42 (d, 1H, J = 12 Hz), 4.21-4.29 (m, 3H), 3.99-4.09 (m, 3H), 3.79 (dd, 1H, J = 7.6 Hz, J = 10 Hz), 3.68 (dd, 1H, J = 4.8 Hz, J = 10 Hz). ¹³C (100 MHz, CDCl₃): δ 151.4, 143.8, 138.4, 138.2, 138.0, 128.4, 128.0, 127.9, 127.9, 109.3, 87.3, 75.9, 73.4, 71.2, 68.1, 66.4. Low-resolution MS (EI): m/z: 472 (M⁺), HRMS (ESI) calcd for C₃₀H₃₂O₅+Na 495.2148, found 295.2148.

Compound 10: ¹**H (400 MHz, CDCl₃)**: δ 9.52 (d, 1H, J = 7.6 Hz), 7.26-7.38 (m, 15H), 7.12 (d, 1H, J = 16 Hz), 6.46 (dd, 1H, J = 7.6 Hz, J = 16 Hz), 5.84 (s, 1H), 5. 80 (s, 1H), 4.55 (d, 1H, J = 12 Hz), 4.53 (d, 1H, J = 11.6 Hz), 4.49 (d, 1H, J = 12 Hz), 4.37-4.40 (m, 3H), 4.32 (d, 1H, J = 11.6 Hz), 4.16 (m, 1H), 3.69 (dd, 1H, J = 1.6 Hz, J = 8 Hz), 3.56 (dd, 1H, J = 6 Hz, J = 9.6 Hz), 3.49 (dd, 1H, J = 6.4 Hz, J = 9.6 Hz), 2.64 (d, 1H, J = 7.6 Hz). (100 MHz, CDCl₃): δ

194.1, 151.3, 142.4, 137.8, 137.4, 137.2, 129.9, 128.5, 128.4, 128.3, 128.2, 128.0, 128.0, 127.8, 126.9, 79.1, 78.7, 74.1, 73.4, 71.0, 70.9, 69.2.

Compound 11: ¹**H** (500 MHz, CDCl₃): δ 7.27-7.37 (m, 15H), 5.26 (s, 1H), 5.15 (s, 1H), 4.79 (d, 1H, J = 12.0 Hz), 4.66 (d, 1H, J = 12.5 Hz), 4.58-4.61 (m, 2H), 4.53 (d, 2H, J = 12.5 Hz), 4.49 (d, 1H, J = 12.0 Hz), 4.28 (s, 1H, 4.13-4.16 (m, 1H), 3.91 (dd, 1H, J = 8.0 Hz, J = 10.0 Hz), 3.80-3.83 (m, 3H), 3.51 (dd, 1H, J = 4.0 Hz, J = 10.5 Hz), 2.79 (bs, 1H), 2.03-2.10 (m, 1H), 1.71-1.76 (m, 1H). ¹³C (125 MHz, CDCl₃): δ 143.1, 138.3, 138.1, 137.9, 128.4, 128.3, 128.2, 128.1, 127.8, 127.7, 127.6, 127.3, 111.3, 78.1, 75.7, 74.3, 73.4, 72.8, 72.7, 71.0, 68.7, 61.1, 33.1. Low-resolution MS (EI): m/z: 474 (M⁺), HRMS (ESI) calcd for C₃₀H₃₄O₅+Na 497.2304, found 297.2304.

Compound 12: Compound **12** was not obtained in pure form and it was isolated along with compound **11**.

Compound 13: ¹**H (500 MHz, CDCl₃)**: δ 7. 23-7. 34 (m, 15H), 5.30 (s, 1H), 5.12 (s, 1H), 4.83 (d, 1H, J = 12.0 Hz), 4.64 (d, 1H, J = 12.5 Hz), 4.61 (d, 1H, J = 12.0 Hz), 4.55 (d, 1H, J = 12.0 Hz), 4.46-4.50 (m, 2H), 4.42 (d, 1H, J = 11.5 Hz), 4.09-4.17 (m, 3H), 3.96-3.98 (td, 1H, J = 12.0 Hz), 4.46-4.50 (m, 2H), 4.42 (d, 1H, J = 11.5 Hz), 4.09-4.17 (m, 3H), 3.96-3.98 (td, 1H, J = 12.0 Hz), 4.46-4.50 (m, 2H), 4.42 (d, 1H, J = 11.5 Hz), 4.09-4.17 (m, 3H), 3.96-3.98 (td, 1H, J = 12.0 Hz), 4.61 (d, 1H, J = 12.

= 2.0 Hz, J = 6 Hz), 3.89 (s, 1H), 3.67 (dd, 1H, J = 6.5 Hz, J = 10 Hz), 3.61 (dd, 1H, J = 6 Hz, J = 10 Hz), 2.00-2.09 (m, 1H), 2.01 (s, 3H), 1.84-1.91 (m, 1H). ¹³C (125 MHz, CDCl₃): δ 170.9, 142.5, 138.5, 138.2, 128.4, 128.3, 128.1, 127.8, 127.6, 127.6, 127.5, 127.2, 111.2, 78.1, 75.5, 73.4, 73.3, 73.2, 72.8, 71.2, 68.8, 61.3, 30.1, 20.9. Low-resolution MS (EI): m/z: 516 (M⁺), HRMS (ESI) calcd for C₃₂H₃₆O₆+Na 539.2410, found 539.2410.

Compound 14: ¹**H** (500 MHz, CDCl₃): δ 7. 25-7. 36 (m, 15H), 6.14 (s, 1H), 4.81 (s, 1H), 4.79 (s, 1H), 4.64 (d, 1H, J = 12.0 Hz,), 4.53 (d, 1H, J = 12.0 Hz), 4.51 (d, 1H, J = 11.5 Hz), 4.43 (d, 1H, J = 11.5 Hz), 4.20-4.22 (m, 1H), 4.08 (d, 1H, J = 4.0 Hz), 3.95-4.01 (m, 3H), 3.79 (dd, 1H, J = 7.5 Hz, J = 10.5 Hz), 3.69 (dd, 1H, J = 5.0 Hz, J = 10.5 Hz), 2.10-2.18 (m, 1H), 2.00 (s, 3H), 1.91-1.97 (m, 1H), 1.55-1.65 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 171.0, 139.5, 138.4, 138.3, 138.1, 128.3, 127.9, 127.7, 127.7, 127.6, 127.6, 111.2, 75.2, 73.4, 73.1, 72.9, 72.7, 71.5, 68.2, 64.0, 27.2, 25.4, 20.9. Low-resolution MS (EI): m/z: 516 (M⁺), HRMS (ESI) calcd for C₃₂H₃₆O₆+Na 539.2410, found 539.2410.

Compound 16: ¹**H** (400 MHz, CDCl₃): δ 7.30-6.37 (m, 10H), 6.48 (dd, 1H, J = 6.4 Hz, J = 14.4 Hz), 4.82 (d, 1H, J = 11.2 Hz), 4.71 (d, 1H, J = 11.2 Hz), 4.69 (d, 1H, J = 11.2 Hz), 4.64 (d, 1H, J = 11.2 Hz), 4.44 (d, 1H, J = 11.2 Hz), 4.24-4.28 (m, 2H), 4.12 (m, 1H), 4.05 (dd, 1H, J = 2 Hz, J = 6.8 Hz), 3.97 (d, 1H, J = 10.8 Hz), 3.56 (dd, 1H, J = 4 Hz, J = 7.6 Hz), 1.38 (d, 3H, J = 6.4 Hz). ¹³C (100 MHz, CDCl₃): δ 151.3, 144.4, 138.3, 138.0, 128.5, 128.4, 128.4, 128.0, 127.9, 127.7, 109.4, 87.3, 79.3, 75.5, 74.2, 73.7, 73.2, 66.1, 17.1. Low-resolution MS (EI): m/z: 366 (M⁺), HRMS (ESI) calcd for C₂₃H₂₆O₄+Na 389.1729, found 389.1729.

Compound 17β: ¹**H** (500 MHz, CDCl₃): δ 9.83 (t, 1H, J = 2.5 Hz), 7.29-7.39 (m, 10H), 5.33 (d, 1H, J = 1.5 Hz), 4.94 (d, 1H, J = 1.5 Hz), 4.76 (d, 1H, J = 11.5 Hz), 4.69 (d, 1H, J = 11.5 Hz), 4.63 (d, 1H, J = 11 Hz), 4.29 (dd, 1H, J = 5 Hz, J = 8 Hz), 4.06 (dt, 1H, J = 1.5 Hz, J = 8.5 Hz), 3.54 (dd, 1H, J = 6 Hz, J = 9 Hz), 3.13 (t, 1H, J = 9 Hz), 2.82 (ddd, 1H, J = 2.5 Hz, J = 8 Hz, J = 16.5 Hz), 2.75 (ddd, 1H, J = 2 Hz, J = 5 Hz, J = 16.5 Hz), 1.26 (d, 3H, J = 6 Hz). ¹³C (125 MHz, CDCl₃): δ 200.6, 144.0, 138.2, 138.0, 128.5, 128.4, 128.0, 127.7, 107.6, 85.6, 84.1, 75.7, 75.1, 73.3, 72.3, 45.3, 18.3. Low-resolution MS (EI): m/z: 366 (M⁺), HRMS (ESI) calcd for C₂₃H₂₆O₄+Na 389.1729, found 389.1729.

Compound 18a: ¹**H (400 MHz, CDCl₃)**: δ 7.30-7.41 (m, 10H), 5.26 (s, 1H), 5. 10 (s, 1H), 4.88(d, 1H, J = 11.2 Hz), 4.74 (d, 1H, J = 11.6 Hz), 4.67 (d, 1H, J = 11.6 Hz), 4.63 (d, 1H, J =11.2 Hz), 4.53 (dd, 1H, J = 4.8 Hz, J = 9.6 Hz), 4.20 (d, 1H, J = 7.6 Hz), 3.77-3.83 (m, 3H), 3.21 (t, H, J = 8.4 Hz), 2.12-2.18 (m, 1H), 1.73-1.80 (m, 1H). ¹³C (100 MHz, CDCl₃): δ 144.5, 138.2, 138.1, 128.5, 128.4, 128.0, 127.8, 127.7, 110.4, 85.5, 80.9, 76.4, 74.5, 72.8, 69.8, 60.6, 33.2, 18.5. Low-resolution MS (EI): m/z: 368 (M⁺), HRMS (ESI) calcd for C₂₃H₂₈O₄+Na 391.1886, found 391.1885.

Compound 186: Not able to resolve in column chromatography and obtained along with 18α .

2-Hydroxymethyl-3,4-di-*O***-benzyl-D-xylal**: ¹**H** (400 MHz, CDCl₃): δ 7.30-7.39 (m, 10H), 6.61 (s, 1H), 4.66 (d, 1H, J= 12.4 Hz), 4.63 (d, 2H, J = 11.2 Hz), 4.57 (d, 1H, J = 11.6 Hz), 4.15-4.10 (m, 1H), 4.08 (d, 1H, J = 12 Hz), 3.97-4.01 (m, 2H), 3.90 (dd, 1H, J = 1.6 Hz, J = 12 Hz), 3.71

(m, 1H), 2.10 (bs, 1H). ¹³C (125 MHz, CDCl₃): δ 145.0, 137.8, 137.6, 128.4, 128.2, 127.9, 127.8, 127.7, 111.3, 71.7, 71.6, 70.9, 70.6, 63.4, 62.4.

Compound 19: ¹**H (400 MHz, CDCl₃)**: δ 7.24-7.29 (m, 10H), 6.60 (s, 1H), 6.39 (dd, 1H, J = 6.8 Hz, 14 Hz), 4.57 (bs, 2H), 4.54 (d, 1H, J = 11.6 Hz), 4.47 (d, 1H, J = 11.6 Hz), 4.25 (d, 1H, J = 7.2 Hz), 4.17 (d, 1H, J = 14.4 Hz), 4.12 (d, 1H, J = 11.6 Hz), 3.96-3.98 (m, 2H), 3.86-3.93 (m, 2H), 3.64 (s, 1H). ¹³C (100 MHz, CDCl₃): δ 151.4, 146.1, 138.1, 137.9, 128.5, 128.5, 128.0, 127.9, 127.8, 108.0, 87.0, 71.9, 71.7, 71.0, 69.5, 67.2, 63.9. Low-resolution MS (EI): m/z: 352 (M⁺), HRMS (ESI) calcd for C₂₂H₂₄O₄+Na 375.1573, found 375.1573.

Compound 20 α : Not resolved in column chromatography and obtained along with **20** β .

Compound 20β: ¹**H** (500 MHz, CDCl₃): δ 9.84 (t, 1H, J = 2 Hz), 7.27-7.36 (m, 10H), 5.14 (s, 1H), 5.12 (s, 1H), 4.66 (dd, 1H, J = 4.5 Hz, J = 8 Hz), 4.55-4.67 (m, 3H), 4.33 (d, 1H, J = 12 Hz), 3.91-4.01 (m, 3H), 3.55-3.56 (m, 1H), 2.85 (ddd, 1H, J = 2.5 Hz, J = 8.5 Hz, J = 16.5 Hz), 2.74 (ddd, 1H, J = 1.5 Hz, J = 4.5 Hz, J = 16.5 Hz). ¹³C (125 MHz, CDCl₃): δ 200.4, 142.9, 138.2, 128.4, 127.8, 109.6, 82.5, 79.2, 73.2, 73.1, 73.0, 67.4, 45.3. Low-resolution MS (EI): m/z: 352 (M⁺), HRMS (ESI) calcd for C₂₂H₂₄O₄+Na 375.1573, found 375.1573.

2-Hydroxymethyl-3,4-di-*O***-benzyl-D-arabinal** and **2-Hydroxymethyl-3,4-di-***O***-benzyl-***L***-arabinal**: ¹**H** (400 MHz, CDCl₃): δ 7.26-7.37, (m, 10H), 6.41 (s, 1H), 4.94 (d, 1H, *J* = 11.6 Hz), 4.70 (bs, 2H), 4.65 (d, 1H, *J* = 11.2 Hz), 4.23 (d, 1H, *J* = 2.8 Hz), 3.92-4.03 (m, 4H), 3.78-3.82 (m, 1H). ¹³C (100 MHz, CDCl₃): δ 144.6, 138.5, 137.9, 128.5, 128.4, 128.2, 127.8, 127.7, 127.5, 111.7, 74.1, 73.7, 71.5, 69.6, 62.7, 61.7.

Compounds 21 and 23: ¹**H (400 MHz, CDCl₃)**: δ 7.27-7.37, (m, 10H), 6.46 (s, 1H), 6.36 (dd, 1H, J = 6.8 Hz, J = 14 Hz), 4.91 (d, 1H, J = 11.6 Hz), 4.72 (d, 1H, J = 12 Hz), 4.68 (d, 1H, 11.2 Hz), 4.65 (d, 1H, J = 11.6 Hz), 4.17-4.35 (m, 3H), 4.93-4.06 (m, 4H), 3.80-3.85 (m, 1H). ¹³C (100 MHz, CDCl₃): δ 151.3, 138.6, 137.9, 128.5, 128.3, 128.2, 127.9, 127.7, 127.6, 108.6, 87.2, 74.4, 74.0, 71.7, 68.7, 66.5, 62.9. Low-resolution MS (EI): m/z: 352 (M⁺), HRMS (ESI) calcd for C₂₂H₂₄O₄+Na 375.1573, found 375.1573.

Compounds 22β and 24β: ¹H (500 MHz, CDCl₃): δ 9.79 (dd, 1H, J = 2 Hz, J = 3 Hz), 7.28-7.39 (m, 10H), 5.04 (s, 1H), 4.99 (s, 1H), 4.67 (d, 1H, J = 12.5 Hz), 4.60 (t, 1H, J = 7 Hz), 4.58 (d, 1H, J = 12 Hz), 4.49 (d, 1H, J = 12 Hz), 4.42 (d, 1H, J = 12.5 Hz), 4.21 (d, 1H, J = 3 Hz), 3.96 (t, 1H, J = 11 Hz), 3.83 (dd, 1H, J = 5 Hz, J = 11 Hz), 3.57 (ddd, 1H, J = 3 Hz, J = 5 Hz, J = 10.5 Hz), 2.67-2.70 (m, 2H). ¹³C (125 MHz, CDCl₃): δ 200.7, 142.8, 138.0, 128.4, 128.3, 127.9, 127.7, 127.6, 127.5, 113.7, 76.9, 76.0, 70.7, 69.4, 69.2, 65.0, 44.8. Low-resolution MS (EI): m/z: 352 (M⁺), HRMS (ESI) calcd for C₂₂H₂₄O₄+Na 375.1573, found 375.1573.

Compound 22a and 24a: ¹**H (400 MHz, CDCl₃)**: δ 9.81 (t, 1H, J = 2 Hz), 7.27-7.35 (m, 10H), 5.33 (s, 1H), 5.11 (s, 1H), 4.68 (s, 2H), 4.64 (d, 1H, J = 12.4 Hz), 4.49 (d, 1H, J = 12.4 Hz), 4.44 (dd, 1H, J = 4.8 Hz, J = 8 Hz), 4.06-4.07 (m, 1H), 4.03 (dd, 1H, J = 5.2 Hz, J = 12.4 Hz), 3.70-3.72 (m, 1H), 3.56 (dd, 1H, J = 2.4 Hz, J = 12 Hz), 3.07 (ddd, 2 Hz, J = 8.4 Hz, J = 16.8 Hz), 2.81 (ddd, 1H, J = 2 Hz, J = 8.4 Hz, J = 16.8 Hz). ¹³C (100 MHz, CDCl₃): δ 200.7, 141.8, 138.2, 137.9, 128.4, 128.3, 127.9, 127.8, 127.8, 127.6, 127.5, 111.7, 78.1, 74.5, 73.0, 71.2, 70.5, 64.8, 45.5. Low-resolution MS (EI): m/z: 352 (M⁺), HRMS (ESI) calcd for C₂₂H₂₄O₄+Na 375.1573, found 375.1573.

Compound 25: ¹H (400 MHz, CDCl₃): δ 9.82 (t, 1H, J = 1.6 Hz), 7.19-7.41 (m, 15H), 4.90 (d, 1H, J = 10.8 Hz), 4.70 (d, 1H, J = 11.6 Hz), 4.57 (d, 1H, J = 11.6 Hz), 4.56 (d, 1H, J = 11.6

Hz), 4.53 (d, 1H, J = 12.0 Hz), 4.49 (d, 1H, J = 12.0 Hz), 4.01-4.04 (m, 1H), 3.66-3.76 (m, 4H), 3.46 (dt, 1H, J = 2.8 H, J = 9.6 Hz), 2.77 (dd, 1H, J = 8.8 Hz, J = 16.0 Hz), 2.50 (dd, 1H, J =4.4 Hz, J = 16.0 Hz), 2.25-2.28 (m, 1H), 1.05 (d, 3H, J = 7.2 Hz). ¹³C (100 MHz, CDCl₃): δ 200.8, 138.5, 138.4, 138.3, 128.4, 128.3, 128.0, 127.9, 127.6, 83.8, 79.7, 75.1, 74.0, 73.4, 73.3, 70.8, 69.3, 46.4, 35.9, 6.5. Low-resolution MS (EI): m/z: 474 (M⁺). HRMS (ESI) calcd for C₃₀H₃₄O₅+Na 497.2304, Found: 497.2304.

Compound 26: ¹**H** (**500 MHz, CDCl**₃): δ 7.20-7.40 (m, 15H), 4.89 (d, 1H, J = 11.0 Hz), 4.69 (d, 1H, J = 11.5 Hz), 4.59 (d, 1H, J = 12.0 Hz), 4.55 (d, 1H, J = 11.5 Hz), 4.54 (d, 1H, J = 12.0 Hz), 4.50 (d, 1H, J = 11.0 Hz), 3.81-3.83 (m, 2H), 3.65-3.72 (m, 3H), 3.63 (dd, 1H, J = 6.0 Hz, J = 11.5 Hz), 3.57 (t, 1H, J = 9.5 Hz), 3.47 (ddd, 1H, J = 2.0 Hz, J = 6.0 Hz, J = 9.5 Hz), 2.66 (bs, 1H), 2.17-2.20 (m, 1H), 2.01-2.06 (m, 1H), 1.53-1.56 (m, 1H), 1.05 (d, 3H, J = 7.0 Hz). ¹³C (100 MHz, CDCl₃): δ 138.5, 138.4, 138.2, 128.4, 128.3, 128.3, 128.0, 127.7, 127.6, 127.5, 127.5, 83.9, 79.3, 78.9, 75.0, 74.5, 73.3, 70.6, 69.7, 61.9, 36.6, 34.5, 6.6. Low-resolution MS (EI): m/z: 476 (M⁺). HRMS (ESI) calcd for C₃₀H₃₆O₅+Na 499.2461, Found: 499.2461.

Compound 27 (for 1,2-*trans* compound): ¹**H** (400 MHz, CDCl₃): δ 7.28-7.37 (m, 10H), 4.4.72 (d, 1H, J = 11.6 Hz), 4.59 (d, 1H, J = 11.6 Hz), 4.58 (d, 1H, J = 12.0 Hz), 4.53 (d, 1H, J = 12.0 Hz), 3.85-3.95 (m, 2H), 3.78 (t, 2H, J = 6.0 Hz), 3.66 (dd, 1H, J = 4.4 Hz, J = 5.6 Hz), 3.35 (t, 1H, J = 5.6 Hz), 2.07-2.11 (m, 1H), 1.96-1.99 (m, 1H), 1.65-1.70 (m, 1H), 1.35 (d, 3H, J = 6.8

Hz), 1.05 (d, 1H, J = 7.2 Hz). ¹³C (100 MHz, CDCl₃): δ 138.4, 138.4, 128.5, 128.4, 128.3, 127.9, 127.8, 127.7, 78.9, 77.8, 74.2, 73.3, 71.6, 69.8, 61.4, 35.6, 33.3, 17.8, 13.5. Low-resolution MS (EI): m/z: 370 (M⁺), HRMS (ESI) calcd for C₂₃H₃₀O₄+Na 393.2042, found 393.2046.

Compounds 28 and 29: ¹**H (500 MHz, CDCl₃)**: δ 9.76 (dd, 1H, J = 1.5 Hz, J = 4.0 Hz), 7.29-7.40 (m, 10H), 5.03 (d, 1H, J = 11.5 Hz), 4.60-4.65 (m, 3H), 3.99 (td, 1H, J = 3.0 Hz, J = 9.5 Hz), 3.79-3.85 (m, 3H), 3.59 (ddd, 1H, J = 2.5 Hz, J = 7.0 Hz, J = 9.0 Hz), 2.54 (ddd, 1H, J = 1.5 Hz, J = 3.5 Hz, J = 15.5 Hz), 2.32 (ddd, 1H, J = 3.5 Hz, J = 15.5 Hz), 1.58-1.62 (m, 1H), 0.94 (d, 3H, J = 7.0 Hz). ¹³C (125 MHz, CDCl₃): δ 201.8, 139.1, 138.4, 128.5, 128.4, 128.2, 127.8, 127.7, 127.5, 127.4, 127.3, 77.6, 74.7, 72.7, 71.3, 64.5, 46.8, 40.2, 14.0. Low-resolution MS (EI): m/z: 354 (M⁺), HRMS (ESI) calcd for C₂₂H₂₆O₄+Na 377.1729, found 377.1729.

¹H NMR, 400 MHz, CDCl₃

BnO

undd

СНО

Ó

BnO

Ю О С С С С С С С

1H NMR, 400 MHz, CDCB

undd

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2012

Ó

OBn

Т

б В

Т

BnO BnO

¹H NMR, 400 MHz, CDCI₃

61

ppm

17ß

¹H NMR, 500 MHz, CDCl₃

18α ¹H NMR, 400 MHz, CDCl₃ . ŌBn BnO

ЧÓ

Ó

Bn

BnO

IS.00I-----

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2012

¹H NMR, 400 MHz, CDCl₃

¹H NMR, 500 MHz, CDCl₃

,^{,,,},сно

Ó

S7.111 —

Sb·LZT 99·LZT 92.LZT TI·8ZT 56.8ZT 8b·8CT 8b·8CT bb·bbT

98.28-94.99-99.99 99.89 19.12 90.47 90.47 89.97 00.77 89.97 00.77 20.77

LS'80τ —

75.721⁻⁷ 79.721-

οε.τετ---

Ţ

BnÖ

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2012