Supplementary Information

Development of low-cost activated carbon cathodes for use in air-cathode microbial fuel cells

Bin Wei,^a Justin C. Tokash,^a Guang Chen,^{a,b} Mickael A. Hickner,^b Bruce E. Logan^{*a}
^a Department of Civil and Environmental Engineering, Penn State University, University Park, PA 16802, USA
^b Department of Materials Science and Engineering, Penn State University, University Park, PA 16802, USA
*Corresponding author: +1-814-863-7908, <u>blogan@psu.edu</u>

	AC cathodes at different loadings (mg/cm ²)							
Parameters	E _c (V)	11	14	28	43	100	171	Pt/C
$\frac{R_{s}(\Omega)}{Q_{1}(F \cdot s^{(a-1)})}$	0.3	16.96 1.18×10 ⁻³ 0.76	14.60 2.23×10 ⁻³ 0.71	$ \begin{array}{r} 14.58 \\ 1.32 \times 10^{-3} \\ 0.82 \\ 0.82 \end{array} $	18.26 2.65×10 ⁻³ 0.79	17.12 3.91×10 ⁻³ 0.69	15.30 3.07×10 ⁻³ 0.65	14.76
$R_{c}(\Omega)$ $Q_{2}(F \cdot s^{(a-1)})$ a_{2} $R_{ct}(\Omega)$ $Z (\Omega \cdot s^{-1/2})$		6.25 0.41 0.65 12.68 2.57	6.15 0.43 0.73 14.87 2.20	0.98 0.68 0.48 13.12 1.82	0.23 0.72 0.67 3.03 0.80	0.86 0.74 0.73 2.91 0.44	0.76 0.86 0.54 10.52 0.16	0.36 0.72 24.50 1.32
$\frac{\sum_{w}(\Omega \times S)}{R_{s}(\Omega)}$ $\frac{Q_{1}(F \cdot S^{(a-1)})}{a_{1}}$ $\frac{R_{c}(\Omega)}{Q_{2}(F \cdot S^{(a-1)})}$ $\frac{a_{2}}{R_{ct}(\Omega)}$ $Z_{w}(\Omega \cdot S^{-1/2})$	0.1	$\begin{array}{r} 13.26\\ 2.24 \times 10^{-3}\\ 0.75\\ 5.61\\ 0.35\\ 0.71\\ 16.74\\ 1.30\end{array}$	$\begin{array}{r} 14.89\\ 3.52 \times 10^{-3}\\ 0.69\\ 5.55\\ 0.56\\ 0.73\\ 21.76\\ 0.91\end{array}$	$\begin{array}{r} 1.02 \\ 17.42 \\ 1.41 \times 10^{-3} \\ 0.80 \\ 1.70 \\ 0.63 \\ 0.45 \\ 22.31 \\ 0.71 \end{array}$	$\begin{array}{r} 17.67\\ 7.41 \times 10^{-3}\\ 0.67\\ 0.30\\ 0.82\\ 0.67\\ 4.68\\ 0.46\end{array}$	$\begin{array}{r} 18.30\\ 1.31 \times 10^{-3}\\ 0.80\\ 0.86\\ 0.81\\ 0.52\\ 14.02\\ 0.06\end{array}$	$\begin{array}{r} 14.14\\ 1.22 \times 10^{-3}\\ 0.78\\ 0.62\\ 0.71\\ 0.53\\ 12.38\\ 0.25\end{array}$	0.40 0.63 13.08 0.75

Table S1 EIS fitting results using activated carbon cathodes with diffusion layers, compared to Pt/C cathodes, at set potentials of 0.3 V or 0.1 V.

Table S2 EIS fitting results using activated carbon cathodes with different PTFE contents (10, 15, 20, 25, 30, 35, and 40 wt %, 43 mg/cm²) at cathode potential of 0.1 V

PTFE content (%)	10	15	20	25	30	35	40
$R_{s}(\Omega)$	15.24	14.38	17.78	15.22	14.24	15.63	15.64
$Q_1(\mathbf{F} \cdot \mathbf{s}^{(a-1)})$	2.62×10^{-3}	0.94×10^{-3}	1.05×10^{-3}	9.42×10^{-3}	1.12×10^{-3}	1.21×10^{-3}	1.03×10^{-3}
a ₁	0.75	0.83	0.82	0.83	0.82	0.84	0.83
$R_{\rm c}(\Omega)$	0.62	2.11	1.52	2.95	2.21	2.68	3.72
$Q_2(F \cdot s^{(a-1)})$	0.64	0.59	0.74	0.63	0.50	0.36	0.31
a ₂	0.71	0.52	0.57	0.46	0.50	0.48	0.48
$R_{\rm ct}(\Omega)$	3.57	7.54	11.58	14.28	15.53	44.30	35.42
$Z_{\rm w}(\Omega \cdot {\rm s}^{-1/2})$	0.41	0.53	0.37	0.54	0.29	0.08	0.15

Fig. S1 Equivalent circuits for EIS spectra with (a) AC cathodes and (b) Pt/C cathodes.

Fig. S2 Nyquist plots of ac air cathodes (a) at 0.3 V, (b) at 0.1 V using 43, 71, 100, 143, 171 mg/cm^2 AC, 10% PTFE without DL; (c) at 0.3 V, (d) at 0.1 V using 7, 11, 14, 28, 43, 100, 171 mg/cm^2 AC, 10% PTFE with DL.

Fig. S3 Power generation obtained using (a) AC cathodes (43, 71, 100, 143, 171 mg/cm² AC, 10% PTFE) without DL, Pt/C cathodes in the initial cycles; (b) AC cathodes (7, 11, 14, 28, 43, 100, 171 mg/cm² AC, 10% PTFE) with DL, Pt/C cathodes in the initial cycles; (c) AC cathodes (7, 11, 28, 43, 100, 171 mg/cm² AC, 10% PTFE) with DL, Pt/C cathodes after 1.5 months; (d) AC cathodes (11, 28, 43, 100, 171 mg/cm² AC, 10% PTFE) after 5 months

Fig. S4 Power generation obtained using AC cathodes (20, 25, 30, 35, 40% PTFE, 43 mg/cm² AC) without DL, Pt/C cathodes after 1 month

Fig. S5 Regressions for cathode current-voltage curves using (a) AC cathodes (11, 14, 43, 100, 171 mg/cm² AC, 10% PTFE) with DL and Pt/C cathodes; (b) AC cathodes (10, 15, 20, 25, 30, 35, 40%, 43 mg/cm² AC) without DL

Fig. S6 An example of Nyquist plots for AC cathode (with 20% PTFE content) and the fitting curve with equivalent circuit

Fig. S7 Bode plots for AC cathode with 20% PTFE and the fitting curves with the equivalent circuit

Fig. S8 Charge-discharge diagram for AC cathodes with different PTFE binder contents (10, 15, 20, 25, 30, 35, 40%, No DL, 43 mg/cm^2 AC)