Supplementary Material (ESI)

In(OTf)₃ catalyzed tandem aza-Piancatelli rearrangement/Michael reaction sequence for the synthesis of 3,4-dihydro-2*H*-benzo[*b*][1,4]thiazine and oxazine derivatives

B. V. Subba Reddy,* Y. Vikram Reddy, P. Subba Lakshumma, G. Narasimhulu, J. S. Yadav, B. Sridhar,^b P. Purushotham Reddy,^c A. C. Kunwar^c

Table of Contents

1. Copies of ¹H and ¹³C NMR spectra of products S2-S26

Details about the X-crystallography:

X-ray data for compounds AN45 were collected at room temperature using a Bruker Smart Apex CCD diffractometer with graphite monochromated MoK α radiation (λ =0.71073Å) with ω -scan method.¹ Preliminary lattice parameters and orientation matrices were obtained from four sets of frames. Integration and scaling of intensity data were accomplished using SAINT program.¹ The structures were solved by Direct Methods using SHELXS97² and refinement was carried out by full-matrix least-squares technique using SHELXL97.² Anisotropic displacement parameters were included for all non-hydrogen atoms. N-bound H atom was located in a difference Fourier density map and refined isotropically. All other H atoms were located in difference density maps, but were positioned geometrically and included as riding atoms, with C-H = 0.93 (aromatic), 0.96 (methyl) or 0.97 Å (methylene) and with U_{iso}(H) = 1.5U_{eq}(C) for the methyl groups and 1.2Ueq(C) otherwise. The methyl groups were allowed to rotate but not to tip.

- 1. SMART & SAINT. Software Reference manuals. Versions 6.28a & 5.625, Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, U.S.A., 2001.
- 2. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Figure caption: The molecular structure of (**3g**), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

¹HNMR Spectrum of Compound 3a.

¹³C spectrum of compound 3a:

¹HNMR Spectrum of Compound 3b.

¹³C spectrum of compound 3b:

¹HNMR Spectrum of Compound 3c.

¹³C spectrum of compound 3c:

¹HNMR Spectrum of Compound 3d:

¹³C spectrum of compound 3d:

¹HNMR Spectrum of Compound 3e:

¹³C spectrum of compound 3e:

¹HNMR Spectrum of Compound 3f:

¹³C spectrum of compound 3f:

¹HNMR Spectrum of Compound 3g:

¹³C spectrum of compound 3g:

¹HNMR Spectrum of Compound 3h:

¹HNMR Spectrum of Compound 3i:

¹HNMR Spectrum of Compound 3j:

Electronic Supplementary Material (ESI) for RSC Advances This journal is C The Royal Society of Chemistry 2012

¹³C spectrum of compound 3j:

¹HNMR Spectrum of Compound 3k:

¹³C spectrum of compound 3k:

¹HNMR Spectrum of Compound 31:

¹³C spectrum of compound 31:

¹HNMR Spectrum of Compound 3m:

¹³C spectrum of compound 3m:

