Electronic Supplementary Information for the article

Tartrate-based ionic liquids: unified synthesis and characterisation

Anne Rouch,^a Tessa Castellan,^a Isabelle Fabing,^a Nathalie Saffon,^b Jean Rodriguez,^c

Thierry Constantieux,^c Jean-Christophe Plaquevent^a and Yves Génisson*^a

^a LSPCMIB, UMR CNRS 5068, Université Paul Sabatier - Toulouse III, Toulouse, France.
Fax: 33 (0)5 61 55 60 11; Tel: 33 (0)5 61 55 62 99; E-mail: genisson@chimie.ups-tlse.fr
^b Institut de Chimie de Toulouse, ICT FR 2599, Université Paul Sabatier - Toulouse III, Toulouse, France.
^c Aix Marseille Université, CNRS, iSm2 UMR 7313, 13397 Marseille cedex 20, France.

Table of contents:

- ¹H NMR spectra of cation hydroxide solutions in D₂O: p 2-6

- ¹H and ¹³C NMR spectra of hemi-tartrate salts in CD₃OD or D₂O: p 7-21

- ¹H and ¹³C NMR spectra of bis-tartrate salts in CD₃OD or D₂O: p 22-38

- Crystal data for [TBA]₂L-Tart (+)-4b: p 39

¹H-NMR (300 MHz, D₂O) spectrum of [Bmpip]OH

¹H-NMR (300 MHz, D₂O) spectrum of [Bmim]OH

¹H-NMR (300 MHz, D₂O) spectrum of [Emim]OH

¹H-NMR (300 MHz, D₂O) spectrum of [Bmmim]OH

¹H-NMR (300 MHz, D₂O) spectrum of [OctPyr]OH

¹H-NMR (300 MHz, D₂O) spectrum of [Bmim]D-HTart

¹³C-NMR (75 MHz, CD₃OD) spectrum of [Bmim]D-HTart

¹H-NMR (300 MHz, CD₃OD) spectrum of [Bmmim]D-HTart

¹³C-NMR (75 MHz, CD₃OD) spectrum of [Bmmim]D-HTart

¹H-NMR (300 MHz, CD₃OD) spectrum of [OctPyr]D-HTart

¹³C-NMR (75 MHz, CD₃OD) spectrum of [OctPyr]D-HTart

¹H-NMR (300 MHz, CD₃OD) spectrum of [OctPyr]*meso*-HTart

¹³C-NMR (75 MHz, CD₃OD) spectrum of [OctPyr]*meso*-HTart

¹H-NMR (300 MHz, CD₃OD) spectrum of [TBA]D-HTart

¹³C-NMR (75 MHz, D₂O) spectrum of [TBA]D-HTart

¹H-NMR (300 MHz, CD₃OD) spectrum of [Bmpyr]D-HTart

¹³C-NMR (75 MHz, CD₃OD) spectrum of [Bmpyr]D-HTart

¹H-NMR (300 MHz, D₂O) spectrum of [Bmpip]D-HTart

¹³C-NMR (75 MHz, CD₃OD) spectrum of [Bmpip]D-HTart

¹H-NMR (300 MHz, D₂O) spectrum of [Bmim]₂D-Tart

¹H-NMR (300 MHz, D₂O) spectra of [Bmim]₂D-Tart

(showing variable extents of deuteration of the C-2 position)

¹³C-NMR (75 MHz, D₂O) spectrum of [Bmim]₂D-Tart

¹H-NMR (300 MHz, CD₃OD) spectrum of [Bmim]₂meso-Tart

¹³C-NMR (75 MHz, CD₃OD) spectrum of [Bmim]₂meso-Tart

¹H-NMR (300 MHz, CD₃OD) spectrum of [Bmmim]₂D-Tart

¹³C-NMR (75 MHz, CD₃OD) spectrum of [Bmmim]₂D-Tart

¹H-NMR (300 MHz, CD₃OD) spectrum of [OctPyr]₂D-Tart

¹³C-NMR (75 MHz, CD₃OD) spectrum of [OctPyr]₂D-Tart

¹H-NMR (300 MHz, CD₃OD) spectrum of [OctPyr]₂meso-Tart

¹³C-NMR (75 MHz, CD₃OD) spectrum of [OctPyr]₂meso-Tart

¹H-NMR (300 MHz, CD₃OD) spectrum of [TBA]₂D-Tart

¹³C-NMR (75 MHz, CD₃OD) spectrum of [TBA]₂D-Tart

¹H-NMR (300 MHz, D₂O) spectrum of [Bmpyr]₂D-Tart

¹³C-NMR (75 MHz, D₂O) spectrum of [Bmpyr]₂D-Tart

¹H-NMR (300 MHz, D₂O) spectrum of [Bmpip]₂D-Tart

¹³C-NMR (75 MHz, CD₃OD) spectrum of [Bmpip]₂D-Tart

Molecular view of [TBA]₂L-Tart (+)-4b in the solid state (thermal ellipsoids at 50% probability)

Table 1. Crystal data and structure refinement for [TBA]₂L-Tart (+)-4b.

Identification code	tc83m	
Empirical formula	$C_{36}H_{90}N_2O_{13}$	
Formula weight	759.10	
Temperature	193(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)	
Unit cell dimensions	a = 9.5730(5) Å	α= 90°.
	b = 15.2408(9) Å	β= 91.996(2)°.
	c = 16.3095(10) Å	$\gamma = 90^{\circ}$.
Volume	2378.1(2) Å ³	
Ζ	2	
Density (calculated)	1.060 Mg/m ³	
Absorption coefficient	0.078 mm ⁻¹	
F(000)	848	
Crystal size	0.60 x 0.10 x 0.10 mm ³	

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2012

Theta range for data collection	5.13 to 24.71°.
Index ranges	-11<=h<=11, -17<=k<=17, -19<=l<=19
Reflections collected	18337
Independent reflections	8021 [R(int) = 0.0338]
Completeness to theta = 24.71°	98.9 %
Max. and min. transmission	0.9922 and 0.9545
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	8021 / 69 / 534
Goodness-of-fit on F ²	1.031
Final R indices [I>2sigma(I)]	R1 = 0.0625, wR2 = 0.1579
R indices (all data)	R1 = 0.0953, wR2 = 0.1808
Largest diff. peak and hole	0.388 and -0.224 e.Å ⁻³

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(3)-H(3A)O(2)	0.75(5)	2.05(5)	2.590(4)	129(5)
O(4)-H(4A)O(5)	0.74(5)	2.10(5)	2.584(3)	124(5)
O(7)-H(7C)O(6)	0.82(3)	2.03(3)	2.797(3)	156(4)
O(7)-H(7D)O(1)#1	0.81(3)	1.93(3)	2.729(3)	169(4)
O(8)-H(8D)O(5)	0.75(3)	2.02(3)	2.755(4)	168(6)
O(8)-H(8E)O(2)#1	0.74(3)	2.04(3)	2.778(4)	174(5)
O(9)-H(9D)O(8)	0.87(4)	2.00(4)	2.854(5)	166(5)
O(9)-H(9E)O(4)#1	0.89(4)	2.11(4)	2.874(4)	143(4)
O(10)-H(10D)O(12)	1.01(7)	1.80(7)	2.805(7)	168(5)

Table 2. Hydrogen bonds for [TBA]₂L-Tart (+)-4b. [Å and °].

O(10)-H(10E)O(7)#2	0.794(10)	1.940(18)	2.719(4)	166(6)
O(11)-H(11C)O(10)	0.91(4)	2.24(5)	2.954(5)	135(5)
O(11)-H(11D)O(6)#2	0.92(4)	1.81(4)	2.733(4)	174(5)
O(12)-H(12D)O(13)#1	0.916(10)	1.75(3)	2.641(6)	163(8)
O(13)-H(13D)O(11)	0.81(5)	2.18(6)	2.856(6)	142(7)
O(13)-H(13E)O(1)#2	0.80(5)	1.95(5)	2.750(5)	173(7)

Symmetry transformations used to generate equivalent atoms: #1 x-1,y,z #2 x,y+1,z