Supplementary information

Programmable multimetallic linear nanoassemblies of Ruthenium-DNA conjugates

Joris Irvoas, Arielle Noirot, Nadia Chouini-Lalanne, Olivier Reynes, Jean-Christophe **Garrigues and Valerie Sartor***

Gel electrophoresis purification:

One example of gel purification of a synthesis carried on solid support. Visualization of the crude of reaction of the synthesis of 2m and 2b on 20 % denaturing polyacrylamide gel with three major bands corresponding of **2b**, **2m** and non-reacted DNA under UV light ($\lambda = 254$ nm (left) and $\lambda = 365$ nm (right)).

PAGE of mono and bis DNA-ruthenium building blocks.

Polyacrylamide gel electrophoresis of DNA-Ruthenium conjugates in denaturing condition (20 % polyacrylamide) and visualized under UV light ($\lambda = 254$ nm) (left) and on safe imagerTM 2.0 blue light transilluminator (right).

Lane 1: 1m; lane 2: 2m; lane 3: 2b; lane 4: 3m; lane 5: 4m; lane 6: 4b; lane 7: 5m; lane 8: 6m; lane 9: 6b; lane 10: 7b; lane 11: 8b.

High resolution electrospray mass values and spectra of DNA-Ruthenium complex conjugates.

Sample	Molecular Formula	Theoretical mass		Experimental mass		Difference
		\mathbf{H}^+		\mathbf{H}^+		nnm
		Charge		Charge		рып
1m	$C_{175}H_{210}N_{59}O_{89}P_{14}Ru$	4	1273,7359	4	1273,752	12,6
		5	1019,1903	5	1019,1924	2,1
2m	C ₁₇₄ H ₂₀₉ N ₆₀ O ₈₇ P ₁₄ Ru	4	1265,9873	4	1265,9893	1,6
		5	1012,9914	5	1012,9915	0,1
		6	844,3274	6	844,3308	4,0
2b	C ₃₁₆ H ₃₉₄ N ₁₁₄ O ₁₇₀ P ₂₈ Ru	5	1894,5562	5	1894,6682	59,1
		6	1578,9648	6	1578,9386	16,6
		7	1353,5424	7	1353,625	61,0
3m	C ₂₃₃ H ₂₈₁ N ₈₈ O ₁₂₂ P ₂₀ Ru	3	2327,0851	3	2327,0852	0,0
		4	1745,5658	4	1745,5606	3,0
		5	1396,6542	5	1396,6616	5,3
4m	C ₂₃₁ H ₂₈₃ N ₇₈ O ₁₂₆ P ₂₀ Ru	4	1721,0569	4	1721,043	8,1
		5	1377,0471	5	1377,079	23,2
		6	1147,7072	6	1147,7289	18,9
4b	$C_{430}H_{542}N_{150}O_{248}P_{40}Ru$	5	2622,6677	5	2622,8994	88,3
		6	2185,7244	6	2185,9023	81,4
		7	1873,622	7	1873,9703	185,9
5m	C ₂₇₁ H ₃₃₀ N ₁₀₁ O ₁₄₇ P ₂₄ Ru	5	1638,8924	5	1638,973	49,2
		6	1365,9117	6	1365,98	50,0
		7	1170,9254	7	1170,936	9,1

High resolution electrospray mass spectrum of 1m.

High resolution electrospray mass spectrum of 2m.

High resolution electrospray mass spectrum of 2b.

High resolution electrospray mass spectrum of **3m**.

High resolution electrospray mass spectrum of 4m.

High resolution electrospray mass spectrum of 4b.

High resolution electrospray mass spectrum of 5m.

PAGE of Multimetallic linear nanoassemblies of Ruthenium-DNA conjugates

Polyacrylamide gel electrophoresis of the first duplexes composed of no, one or two ruthenium complexes in native condition (20 % polyacrylamide) and visualized under UV light ($\lambda = 254$ nm) (left) and on safe imagerTM 2.0 blue light transilluminator (right).

Lanes 1and 11: two products for migration control, upper: xylene cyanol, lower: bromophenol blue; lane 2: 1 + 2; lane 3: 1m + 2; lane 4: 1m + 2m; lane 5: 3 + 4; lane 6: 3m + 4; lane 7: 3m + 4m; lane 8: 5 + 6; lane 9: 5m + 6; lane 10: 5m + 6m.

Polyacrylamide gel electrophoresis of the longer linear assemblies composed of three to seven ruthenium complexes in native conditions (12 % polyacrylamide) and visualized under UV light ($\lambda = 254$ nm) (left) and on safe imagerTM 2.0 blue light transilluminator (right).

Lane 1: 2b; lane 2: 4b; lane 3: 6b; lane 4: 7b; lane 5: 8b; lane 6: 2b + 2x1m; lane 7: 4b + 2x3m; lane 8: 6b + 2x5m; lane 9: 7b + 2x1 + 2x3m; lane 10: 7b + 2x1m + 2x3m; lane 11: 8b + 2x1 + 2x3 + 2x5m; lane 12: 8b + 2x1m + 2x3m + 2x5m.

Fluorescence spectra of linear assemblies.

curve 1: 2b + 2x1m; curve 2: 4b + 2x3m; curve 3: 6b + 2x5m; curve 4: 7b+2x1 + 2x3m; curve 5: 7b + 2x1m + 2x3m; curve 6: 8b + 2x1 + 2x3 + 2x5m; curve 7: 8b + 2x1m + 2x3m + 2x5m

Tm curves of linear assemblies

Tm curves - Blue: 1+2; Red: 1m+2; Green: 1m+2m; Purple: 2b+2x1m

Tm curves - Blue: **3**+**4**; Red: **3m**+**4**; Green: **3m**+**4m**; Purple: **4b**+2x**3m**

Tm curves - Blue: 5+6; Red: 5m+6; Green: 5m+6m; Purple: 6b+2x5m

Tm curves - Blue: 7b + 2x1 + 2x3m; Red: 7b + 2x1m + 2x3m; Green: 8b + 2x1 + 2x3 + 2x5m; Purple: 8b + 2x5m + 2x3m + 2x1m

Circular Dichroism of linear assemblies

Red: 1+2; Blue: 1m+2; Green: 1m+2m; Purple: 2b+2x1m

Red: 3+4; Blue: 3m+4; Green: 3m+4m; Purple: 4b+2x3m

Red: **5**+**6**; Blue: **5m**+**6**; Green: **5m**+**6m**; Purple: **6b**+2x**5m**

Red: 7b+2x1+2x3m; Blue: 7b+2x1m+2x3m; Green: 8b+2x1+2x3+2x5m; Purple: 8b+2x1m+2x3m+2x5m