Accessory Publication

Improved Synthesis of 14-Hydroxy Opioid Pharmaceuticals and Intermediates

Gaik B. Kok^A and Peter J. Scammells^{A,B}

^A Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia

^B Corresponding author. E-mail: peter.scammells@monash.edu

Figure 1	Oxycodone (1) ¹ H NMR spectrum in CDCl ₃	S-2
Figure 2	Oxycodone (1) 13 C NMR spectrum in CDCl ₃	S-3
Figure 3	Oxycodone (1) ¹ H NMR spectrum in $CDCl_3$	S-4
Figure 4	Oxycodone (1) ¹ H NMR spectrum in $CDCl_3$	S-5
Figure 5	Oxycodone (1) IR spectrum	S-6
Figure 6	Oxycodone (1) HPLC	S-7
Figure 7	Oxymorphone (2) ¹ H NMR spectrum in $CDCl_3$	S-8
Figure 8	Oxymorphone Hydrochloride $(2 \cdot HCl)$ ¹ H NMR spectrum in DMSO-d ₆	S-9
Figure 9	Oxymorphone Hydrochloride ($2 \cdot HCl$) ¹ H NMR spectrum in D ₂ O	S-10
Figure 10	Oxymorphone (2) 13 C NMR spectrum in DMSO-d ₆	S-11
Figure 11	Oxymorphone (2) IR spectrum	S-12
Figure 12	Oxymorphone (2) HPLC	S-13
Figure 13	14-Hydroxycodeinone (5) 1 H NMR spectrum in D ₂ O+TFA	S-14
Figure 14	14-Hydroxycodeinone Hydrochloride (5 · HCl) 1 H NMR spectrum in D ₂ O	S-15
Figure 15	14-Hydroxycodeinone Hydrochloride (5 · HCl) 13 C NMR spectrum in D ₂ O	S-16
Figure 16	14-Hydroxymorphinone Hydrochloride ($6 \cdot HCl$) ¹ H NMR spectrum in D ₂ O	S-17
Figure 17	14-Hydroxymorphinone Hydrochloride ($6 \cdot HCl$) ¹³ C NMR spectrum in D ₂ O	S-18
Figure 18	Naltrexone (7) ¹ H NMR spectrum in $CDCl_3$	S-19
Figure 19	Naltrexone (7) 13 C NMR spectrum in CDCl ₃	S-20
Figure 20	Naltrexone (7) IR spectrum	S-21
Figure 21	Naltrexone (7) HPLC	S-22
Figure 22	<i>N</i> -Noroxymorphone Hydrochloride ($9 \cdot HCl$) ¹ H NMR spectrum in DMSO-d ₆	S-23
Figure 23	<i>N</i> -Noroxymorphone Hydrochloride (9 • HCl) ¹ H NMR spectrum in D_2O	S-24
Figure 24	<i>N</i> -Noroxymorphone (9) 13 C NMR spectrum in DMSO-d ₆	S-25
Figure 25	Noroxycodone (9) IR spectrum	S-26
Figure 26	Noroxymorphone (9) HPLC	S-27
Figure 27	14-Hydroxy- <i>N</i> -normorphinone HCl (13 ·HCl) ¹ H NMR spectrum in D_2O	S-28
Figure 28	14-Hydroxy- <i>N</i> -normorphinone HCl (13 ·HCl) 13 C NMR spectrum in D ₂ O	S-29
Figure 29	Oxymorphol (17) ¹ H NMR spectrum in CDCl ₃	S-30
Figure 30	Oxymorphol (17) ¹ H NMR spectrum in D_2O+HCl	S-31
Figure 31	<i>N</i> -Noroxymorphol Hydrochloride (18) 1 H NMR spectrum in D ₂ O	S-32
References		S-33

Figure 1. ¹H NMR of Crude Oxycodone (1) in CDCl₃ (sample from reduction of 14-hydroxycodeinone* over 5% Pd/BaSO₄ in MeOH)

*Prepared via oxidation of thebaine in HOAc-TFA, according to reaction conditions reported in reference 1.

*Prepared according to conditions described in reference 1

*Prepared via oxidation of thebaine hydrochloride with *m*-CPBA in 10% HOAc

*Prepared via oxidation of thebaine hydrochloride with *m*-CPBA in 10% HOAc

Figure 5. Oxycodone (1) IR spectrum

Figure 6. Oxycodone (1) HPLC

*Prepared via conditions in Table 1, Entry 8.

Figure 7. ¹H NMR of Crude Oxymorphone (**2**) in CDCl₃ (sample from reduction of 14-hydroxymorphinone Hydrochloride* over 5% Pd/BaSO₄ in MeOH)

*Prepared via oxidation of oripavine hydrochloride with *m*-CPBA in 10% HOAc

*Prepared via oxidation of oripavine hydrochloride with *m*-CPBA in 10% HOAc

Figure 9. ¹H NMR of Crude Oxymorphone Hydrochloride (**2**·**HCl**) in D₂O*¹ (sample from reduction of 14-hydroxymorphinone Hydrochloride*² over 5% Pd/BaSO₄ in MeOH)

*¹Oxymorphone hydrochloride forms a gem-diol, with a characteristic singlet at δ 4.65 ppm, in D₂O (Reference 2)

*²Prepared via oxidation of oripavine hydrochloride with *m*-CPBA in 10% HOAc

Figure 11. Oxymorphone (2) IR spectrum

Figure 12. Oxymorphone (2) HPLC

*Prepared via conditions in Table 1 Entry 11

Figure 13. ¹H NMR of 14-Hydroxycodeinone (5)* in D_2O + TFA

*Prepared via literature methods reported in reference 1

Figure 14. ¹H NMR of Crude 14-Hydroxycodeinone Hydrochloride (5·HCl)* in D₂O

*Prepared via oxidation of thebaine hydrochloride with *m*-CPBA in 10% HOAc

Figure 15. ¹³C NMR of Crude 14-Hydroxycodeinone Hydrochloride $(5 \cdot HCl)^*$ in D₂O

*Prepared via oxidation of thebaine hydrochloride with *m*-CPBA in 10% HOAc

*Prepared via oxidation of oripavine hydrochloride with *m*-CPBA in 10% HOAc

Figure 17. ¹³C NMR of Crude 14-Hydroxymorphinone Hydrochloride $(6 \cdot HCl)^*$ in D₂O

*Prepared via oxidation of oripavine hydrochloride with *m*-CPBA in 10% HOAc

Figure 18. ¹H NMR of Naltrexone (7) in CDCl₃

Figure 19. ¹³C NMR of Naltrexone (7) in CDCl₃

Figure 20. Naltrexone (7) IR spectrum

Figure 21. Naltrexone (7) HPLC

Peak Results									
	Name	RT	Height	% Area	Area (µV*sec)				
1		2.263	1532	0.39	22953				
2		6.335	373053	97.94	5791955				
3		13.424	4277	1.67	98779				

Figure 23. ¹H NMR of Crude *N*-Noroxymorphone Hydrochloride (**9**•**HCl**) in D₂O* (sample from reduction of 14-hydroxy-*N*-normorphinone Hydrochloride over 5% Pd/BaSO₄ in MeOH)

*The hydrochloride salt of 6-keto-morphinans such as oxycodone and oxymorphone are known to form gem-diols in D₂O (Reference 2); in the case of *N*-noroxymorphone, the singlet at δ 4.63 ppm is characteristic of the chemical shift due to H-6 of the gem-diol.

Figure 24. ¹³C NMR of Crude *N*-Noroxymorphone (9) in DMSO-d₆ (sample from reduction of 14-Hydroxy-*N*-normorphinone Hydrochloride over 5% Pd/BaSO₄ in MeOH)

Figure 25. Noroxymorphone (9) IR spectrum

Figure 26. Noroxymorphone (9) HPLC

Peak Results									
	Name	RT	Height	% Area	Area (µV*sec)				
1		2.314	15411	1.43	146191				
2		3.377	2275	0.51	52540				
3		4.578	827675	95.66	9813537				
4		5.166	10695	0.71	72964				
5		5.669	8289	0.55	56334				
6		6.406	7801	0.89	91420				
7		7.591	2763	0.25	25512				

*Prepared via conditions in Table 2, Entry 3

Figure 27. ¹H NMR of Crude 14-Hydroxy-*N*-normorphinone Hydrochloride (13·HCl)* in D₂O

*Prepared via oxidation of N-nororipavine hydrochloride with m-CPBA in 10% HOAc

*Prepared via oxidation of N-nororipavine hydrochloride with m-CPBA in 10% HOAc

Figure 29. ¹H NMR of Crude Oxymorphol (17)* in CDCl₃

*Ratio of 6-epimers: $\alpha:\beta \sim 5:1$

Figure 30. ¹H NMR of Crude Oxymorphol (17)* in D_2O+HCl

*Ratio of 6-epimers: α : $\beta \sim 5$:1

Figure 31. ¹H NMR of Crude *N*-Noroxymorphol Hydrochloride $(18)^*$ in D₂O

*Ratio of 6-epimers: $\alpha:\beta \sim 14:1$

References

- [1] Hauser, F. M.; Chen, T.-K.; Carroll, F. I. J. Med. Chem. 1974, 17, 1117.
- [2] Caldwell, G. W.; Gauthier, A. D.; Villani, F. J.; Maryanoff, C. A.; Leo, G. *Tetrahedron Lett.* **1991**, *32*, 3763.