Electronic Supplementary Information

Investigations on a Series of Novel Ionic Liquids Containing the [*closo*-B₁₂Cl₁₂]²⁻ Dianion

Na Zhou,^{*a,b*} Guoying Zhao*^{*b*} Kun Dong,^{*b*} Jian Sun^{*b*} and Huawu Shao*^{*a*}

 ^a Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China. E-mail: <u>shaohw@cib.ac.cn</u>

 ^b Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China. E-mail: gyzhao@home.ipe.ac.cn

1. Preparation of $Cs_2[B_{12}Cl_{12}]^{1,2}$

(1) Preparation of [NEt₃H]₂[B₁₂H₁₂]

Na[BH₄] (0.26 mol) in diglyme (40 mL) was charged into a 250 mL three-necked round bottom flask equipped with a 50 mL dropping funnel which should reach under the surface of the reaction mixture, with a pressure equalizing sidearm, a reflux condenser and a bubbler containing silicon oil. Iodine (0.081 mol) was dissolved in 35mL diglyme and added to the dropping funnel. The entire apparatus was flushed with dry argon. The suspension of Na[BH₄] in diglyme was vigorously stirred and heated until the temperature rose to 100 °C. Then iodine was added drop-wise over a period of 30 min. During the addition, the amount of insoluble Na[BH₄] decreased and at the end a yellow color of the reaction mixture was observed. The dropping funnel was disassembled and the reaction mixture was continuously stirred over night at 100 °C under an atmosphere of argon to complete the formation of $Na[B_3H_8]$. On the next day the temperature was increased and the reaction mixture was refluxed (temperature of the oil bath was 185 °C) over night (16 h) under an atmosphere of dry argon to completely disproportionate $Na[B_3H_8]$ to $Na_2[B_{12}H_{12}]$ (by-product: $Na[BH_4]$). Eventually the reaction mixture was cooled down to the room temperature and the diglyme was distilled off under dynamic vacuum at 140 °C. A large amount of white solid (Na₂[B₁₂H₁₂], Na[BH₄], NaI) remained. The white solid was dissolved in 60 mL of water, 28 mL of concentrated hydrochloric acid were added carefully to the water solution. The acidified clear solution was stored in a fridge (+6 °C) over night and colorless crystals (ca. 1.5 g) of boric acid were formed and removed by filtration. The filtrate was treated with 40 mL Et₃N (pH = 9-10) and readily a voluminous white solid precipitated. The cloudy solution was stirred over night (14 h) to complete the precipitation. The white solid (ca. 8 g) was collected by filtration. The solid obtained was suspended in water, heated and then filtrated while still hot (50 and 60 °C) to remove the more soluble boric acid. The product was dried in vacuum to give $[NEt_3H]_2[B_{12}H_{12}]$ as a white solid (yield: 51%).

(2) Preparation of Cs₂[B₁₂H₁₂]

3 equivalents of CsOH was added to a solution of solid $[NEt_3H]_2[B_{12}H_{12}]$ dissolved in water in a polypropylene beaker and it precipitates immediately to give $Cs_2[B_{12}H_{12}]$ after the CsOH addition. (Typically about 100 mL water was used for 10 g $[NEt_3H]_2[B_{12}H_{12}]$).

(3) Preparation of Cs₂[B₁₂Cl₁₂]

 $Cs_2[B_{12}H_{12}]$ used in this reaction was recrystallized from hot water and dried under vacuum at 80 °C for 8 h before use. MeCN was dried with CaH₂, distilled under Ar and stored over molecular sieves in an Ar-filled glovebox. SO₂Cl₂ used in this reaction was fractionally distilled before use. To a suspension of $Cs_2[B_{12}H_{12}]$ (0.25 mmol) in acetonitrile (3 mL) in a Schlenk flask was slowly added SO₂Cl₂ (37 mmol) under Ar. The mixture was heated to reflux. After 24 h, all volatiles were removed under vacuum to give a white solid $Cs_2[B_{12}Cl_{12}]$.

¹ V. Geis, K. Guttsche, C. Knapp, H. Scherer and R. Uzun, Dalton Trans., 2009, 2687–2694.

² W. X. Gu and O. V. Ozerov, Inorg. Chem., 2011, 50, 2726–272.

		Analysis foun	ESI-MS			
Abbreviation	С	Н	Ν	Cl	Cation	Anion
[Hmim] ₂ [B ₁₂ Cl ₁₂]	(13.32) 13.91	(1.96) 2.11	(7.77) 7.64	(58.97) 59.11	_	277.37
$[C_2 mim]_2 [B_{12}Cl_{12}]$	(18.54) 18.92	(2.85) 2.90	(7.21) 7.15	(54.72) 54.95	111.09	277.37
$[C_3 mim]_2 [B_{12} Cl_{12}]$	(20.86) 21.32	(3.23) 3.39	(6.95) 6.73	(52.89) 52.15	125.10	277.37
$[C_4 mim]_2 [B_{12}Cl_{12}]$	(23.05) 23.52	(3.63) 3.43	(6.72) 6.56	(51.03) 50.82	139.12	277.37
$[C_8mim]_2[B_{12}Cl_{12}]$	(30.48) 31.39	(3.63) 3.97	(6.72) 5.99	(44.98) 45.29	195.18	277.37
[C ₁₀ mim] ₂ [B ₁₂ Cl ₁₂]	(33.57) 34.02	(5.42) 5.57	(5.59) 5.59	(42.46) 42.36	223.21	277.37
[Bnmim] ₂ [B ₁₂ Cl ₁₂]	(31.48) 30.95	(3.30) 2.97	(6.12) 6.25	(46.46) 46.68	173.10	277.37
$[C_4C_1mim]_2[B_{12}Cl_{12}]$	(25.09) 25.03	(3.98) 3.99	(6.50) 6.46	(49.37) 49.25	153.14	277.37
[HEmim] ₂ [B ₁₂ Cl ₁₂]	(17.80) 18.25	(2.74) 2.89	(6.92) 6.87	(52.55) 52.35	127.08	277.37
$[N_{2224}]_2[B_{12}Cl_{12}]$	(27.55) 27.36	(5.55) 5.65	(3.21) 3.04	(48.80) 49.05	158.18	277.37
$[N_{2226}]_2[B_{12}Cl_{12}]$	(31.07) 30.69	(6.08) 6.04	(3.02) 2.71	(45.85) 46.04	186.22	277.37
$[N_{11116}]_2[B_{12}Cl_{12}]^a$	(40.60) 41.33	(7.53) 7.46	(2.49) 2.83	(37.84) 37.79	284.32	277.37
$[N_{1116}]_2[B_{12}Cl_{12}]^b$	(40.60) 41.01	(7.53) 7.67	(2.49) 2.08	(37.84) 37.11	284.32	277.37
$[N_{222HE}]_2[B_{12}Cl_{12}]$	(22.67) 22.64	(4.76) 4.75	(3.30) 3.23	(50.19) 49.99	146.15	277.37
[PyC ₄]2[B ₁₂ Cl ₁₂]	(26.12) 26.48	(3.41) 3.40	(3.39) 3.40	(51.40) 51.26	136.11	277.37
$[P_{PPP2}]_2[B_{12}Cl_{12}]$	(42.22) 42.47	(3.54) 3.64	_	(37.39) 37.12	291.12	277.37

Table S.1	Elemental	analysis	and e	electrospray	ionization	mass	spectron	metry

[Papage]a[Bac][a]	(41.07)	(3.45)	(3.45) (36.3)		307 12 27		
[1 p p p HE]2[D12C112]	42.01	3.37		36.25	507.12	277.37	

^a The sample without any further treatment. ^b The sample prepared and further treated with water at the temperature of 60 °C.

Imidazolium	C(2)-		C(5)-H	NCH	N-	NCH ₂ -	N(CH ₂) ₂ -	N(CH ₂) _{n-1} -	
$[B_{12}Cl_{12}]$	H	С(4)-П	С(э)-п	N-С <i>П</i> ₂ -	CH ₃	CH ₂	(CH ₂) _{n-3} -	CH ₃	
[Hmim] ₂ [B ₁₂ Cl ₁₂]	8.94(s)	7.65(m)	7.60(m)		3.85(s)	_	_	_	
				—				—	
[Camim]a[BacClaa]	9.25(s)	7.81(m)	7.72(m)	4.21(q)	3.86(s)			1.42(t)	
	9.25(3)	7.01(III)	7.72(III)	<i>J</i> =7.6Hz	5.00(3)			<i>J</i> =6.8Hz	
[C mim] [D Cl]	0.00(a)	776(m)	4.12(q)	4.12(q)	2.05()	2.05() 1.7	1.70())		0.85(t)
	9.09(8)	7.70(III)	7.70(III)	<i>J</i> =7.1Hz	5.85(8)	1,79(III)	_	<i>J</i> =7.4Hz	
	0.17(-)	7 79()	7.71()	4.17(t)	2.95(-)	1,77(m)	1 2 ((m))	0.90(t)	
$[C_4 \text{mim}]_2[B_{12}CI_{12}]$	9.1/(s)	7.78(m)	/./I(m)	<i>J</i> =6.8Hz	5.65(8)		1.20(m)	<i>J</i> =7.6Hz	
	0.14()	774()		4.12(t)	2.02()	1.75()	1.22-1.20	0.81(t)	
$[C_8 \text{mim}]_2 [B_{12} \text{Cl}_{12}]$	9.14(s)	7.74(m)	/.6/(m)	<i>J</i> =6.8Hz	3.82(s)	1,/5(m)	(m)	<i>J</i> =6.9Hz	
	0.10()			4.14(t)	0.04()		1.27-1.24	0.86(t)	
$[C_{10}mm]_2[B_{12}Cl_{12}]$	9.10(s)	/.//(m)	/./0(m)	J=7.6Hz	3.84(s)	1,/6(m)	(m)	<i>J</i> =6.9Hz	
	0.07()	5 01()	7 00()	5 40()	0.07()		7.42-7.43		
$[Bnmim]_2[B_{12}CI_{12}]$	9.27(s)	7.81(m)	7.80(m) 5.43(s) 3.86(s) -		7.80(m) 5.43(s) 3.86(s) - ((m)	_	
[C4C1mim]2[B12C]12			- ()	4.11(t)		1 (0())		0.91(t)	
]	_	7.65(m)	7.62(m)	<i>J</i> =7.6Hz	3.75(s)	1.69(m)	1.28(m)	<i>J</i> =7.6Hz	
				4.21(t)				(—OH)	
$[\text{HEmim}]_2[\text{B}_{12}\text{Cl}_{12}]$	9.09(s)	7.73(m)	7.70(m)	<i>J</i> =5.5Hz	3.87(s)	3.71(m)	—	5.18(s)	

Table S.2 ¹HNMR chemical shifts (ðppm, JHz) of the reported salts in DMSO-d₆

Ammonium	NCH	N-CH ₂ -	N-(CH ₂) ₂ -	N-(CH ₂) _{n-1} -	N CH ³	N CH ³	-04
$[\mathbf{B}_{12}\mathbf{Cl}_{12}]$	N-C <i>H</i> ₂	CH ₂	(CH ₂) _{n-3} -	CH ₃	N-CH ₂	N-СП3	-011
	3.11 (t)	1.56(m)	1.22(m)	0.94(t)	3.23(q)	1.19(m)	_
$[N_{2} _{2} _{2} _{4}]_{2}[B_{12}CI_{12}]$	<i>J</i> =8.2Hz	1.36(m)	1.33(m)	<i>J</i> =7.6Hz	<i>J</i> =7.6Hz	1.18(m)	
	3.12(t)	1 57(m)	1.31- 1.30	0.88(t)	3.24(q)	1 19(m)	_
	<i>J</i> =8.2Hz	1.37(111)	(m)	<i>J</i> =6.2Hz	<i>J</i> =7.6Hz	1.19(m)	
$[N_{1,1,1,16}]_{2}[B_{12}Cl_{12}]$	3.25(t)	1.66(m)	1.29- 1.24	0.86(t)	_	3.03(s)	_
	<i>J</i> =8.3Hz		(m)	<i>J</i> =6.2Hz			
	2.20(m)			2.24(a)	2.20(m)	1.18(t)	5.26(a)
[¹ N2 2 2 HEJ2[D 12 C 112]	3.30(III)			5.54(8)	5.50(III)	<i>J</i> =7.6Hz	5.20(8)

Phosphonium	P-CH.	P-CH ₂ -	P-(C ₆ <i>H</i> ₅)-	P-(C ₆ H ₅)-	—0 <i>H</i>	
$[\mathbf{B}_{12}\mathbf{Cl}_{12}]$	1-CH ₂	CH ₂ -	0.m	р		
	3.62(m)	1.23(m)	7.79-7.78	7.90(m)	_	
	<i>J</i> =7.6Hz	<i>J</i> =7.6Hz	(m)	7.80(III)		
	2.79()	2.79()	7.78-7.75	7.90(m)	5 44(-)	
$[P_{PPPHE}]_2[B_{12}Cl_{12}]$	3.78(m)	3.78(m)	(m)	7.80(m)	5.44(S)	

Pyridinium	C(2) H	C(3) H		N CH	NCH ₂ -	N(CH ₂) ₂ -	N-(CH ₂) _{n-1} -
$[B_{12}Cl_{12}]$	C(2)-11	C(3)-11	C(4 <i>)-11</i>	1 1-C <i>H</i> ₂	CH ₂	(CH ₂) _{n-3} -	CH ₃
$[PyC_4]_2[B_{12}Cl_{12}]$	9.10(d)	8.17(t)	8.61(t)	4.61(t)	1.00(a)	1.20(m)	0.92(t)
	<i>J</i> =5.5Hz	<i>J</i> =6.8Hz	<i>J</i> =7.6Hz	<i>J</i> =7.6Hz	1.90(q) 1.29(m)		<i>J</i> =7.6Hz

Table S.3 Melting points of the mixture including $[N_{1\ 1\ 1\ 16}]_2[B_{12}Cl_{12}]$ (1) and $[C_4mim]Cl$ (2)are detected, as a function of various quality ratios.

Quality Ratio (m1:m2)	Melting Point (T _m / ^o C)
1:0	104
3:1	93
1:1	69
1:3	31
0:1	41

Fig. S.1 FT-IR spectrum of $[N_{1\,1\,1\,16}]_2[B_{12}Cl_{12}]$ where the red spectrum represents sample treated with water at the temperature of 60 °C while the blue spectrum represents the one without any treatment.

Fig. S.2 ¹H NMR spectrum of $[N_{1 \ 1 \ 1 \ 6}]_2[B_{12}Cl_{12}]$ in DMSO-d₆ where the former spectrum (a) represents sample treated with water at the temperature of 60 °C while the latter spectrum (b) represents the one without any treatment.

Fig. S.3 ¹H NMR spectrum of $[C_3mim]_2[B_{12}Cl_{12}]$ in DMSO-d₆.

Fig. S.4 ¹H NMR spectrum of $[C_{10}mim]_2[B_{12}Cl_{12}]$ in DMSO-d₆.

Fig. S.5 ¹H NMR spectrum of $[\text{HEmim}]_2[B_{12}Cl_{12}]$ in DMSO-d₆.

Fig. S.6 1 H NMR spectrum of [N_{2 2 2 4}]₂[B₁₂Cl₁₂] in DMSO-d₆.

Fig. S.7 1 H NMR spectrum of $[N_{2 2 2 HE}]_{2}[B_{12}Cl_{12}]$ in DMSO-d₆.

Fig. S.8 1 H NMR spectrum of $[P_{PPP2}]_{2}[B_{12}Cl_{12}]$ in DMSO-d₆.

Fig. S.9 ¹H NMR spectrum of $[P_{P P P HE}]_2[B_{12}Cl_{12}]$ in DMSO-d₆.

Fig. S.10 ¹H NMR spectrum of $[PyC_4]_2[B_{12}Cl_{12}]$ in DMSO-d₆.

Fig. S.11 FT-IR spectrum of $[C_3mim]_2[B_{12}Cl_{12}]$.

Fig. S.12 FT-IR spectrum of $[C_{10}mim]_2[B_{12}Cl_{12}]$.

Fig. S.13 FT-IR spectrum of $[\text{HEmim}]_2[B_{12}Cl_{12}]$.

Fig. S.14 FT-IR spectrum of $[N_{2224}]_2[B_{12}Cl_{12}]$.

 $\label{eq:Fig. S.15} FT\text{-}IR \mbox{ spectrum of } [N_{2\,2\,2\,HE}]_2[B_{12}Cl_{12}].$

Fig. S.16 FT-IR spectrum of $[P_{PPP2}]_2[B_{12}Cl_{12}]$.

Fig. S.17 FT-IR spectrum of $[P_{PPPHE}]_2[B_{12}Cl_{12}]$.

Fig. S.18 FT-IR spectrum of $[PyC_4]_2[B_{12}Cl_{12}]$.